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ABSTRACT 

This paper introduces a method for interpolating oblique non-degenerate sequences of points through the 

use of specific cubic BézIER curves (splines), resulting in a global curve that also preserves its obliquity. 

The interpolation technique employs two-dimensional BézIER curves that are designed to be either convex 

or mono-inflective. These curves ensure that their scalar functions remain monotonic, thereby maintaining 

the obliquity, convexity, and any inflections present in the sequence being interpolated. Furthermore, this 

approach can be extended to interpolate any sequence of points using oblique two-dimensional convex and 

mono-inflective curves, not limited to just oblique non-degenerate sequences. 

Keywords: Interpolation, non-degenerate Sequences of Points, Two-Dimensional BézIER Splines, Obliq- 

uity, Convexity, Mono-Inflection. 
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Figure 1: Parentheses (delimiters) as dynamic symbols 

 

INTRODUCTION 

We present an algorithm designed to interpolate a non-degenerate sequence of points while maintaining 

monotonicity in both dimensions using a set of two-dimensional cubic BézIER curves. The resulting inter- 

polating curves also preserve monotonicity in both coordinates. This article extends the work published 

in [3], where an interpolation approach for convex oblique point sequences was described. In this paper, 

we generalize the method to accommodate cases where the sequence of oblique points may be convex 

or exhibit inflections. Not only have we added support for inflections, but we have also significantly 

reformulated the mathematical framework. This research is motivated by the need for dynamic scaling of 

font characters represented in outline form. 

In the context of an electronic document—especially a scientific one—characters can be classified as either 

static or dynamic. A static character remains consistent throughout the document, regardless of context; 

a mathematical symbol such as α serves as a prime example. Conversely, dynamic symbols may vary in 

size (height, width, thickness) based on their context within the document. Mathematical delimiters, such 

as those illustrated in Figures 1a and 1b from [18], exemplify this behavior. 

While the development of static fonts has reached a high level of sophistication, the support for dynamic 

characters—such as variable-sized mathematical symbols (parentheses, braces, etc.) and Arabic letters 

that utilize kashida (a mechanism for justifying Arabic text)—is still a work in progress. Ongoing research 

aims to address these challenges and find appropriate solutions [2, 4, 5, 13, 14]. 

 

 

 

Statement of the problem 

Our study on this topic concluded that the challenge of supporting curvilinear dynamic characters— 

unlike simpler line characters—primarily arises from mathematical formalization rather than from the 

font language itself. We identified several key points regarding the dynamism of symbols or characters in 

general: 

The transition from the parentheses in Figure 1a to those in Figure 1b does not exhibit linear scaling. In 

fact, the height of the parentheses increases by more than threefold. However, this ratio does not apply to 
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their thickness. In the realm of font design, this method of scaling is known as optical scaling, as it aims 

to enhance visual appeal for the human eye. For further insights on optical scaling, please refer to [10, 16]. 

Finding an appropriate combination of affine transformations for the optical scaling of a set of curves 

that define the outline of a dynamic character can be challenging. The approach taken is to determine 

a series of control points that accurately represent the topology of the character. These control points 

are then interpolated using two-dimensional BézIER curves to create the outline of the area to be shaded. 

The dynamic character can be stretched as needed by applying suitable transformations to these points, 

ensuring that the topology of the outline remains intact. Note that the algorithm for stretching sequences 

of points is beyond the scope of this paper and has been submitted separately. 

We have observed that the segments of the outline curves of a dynamic character that require stretching 

are monotonic in both the horizontal (x) and vertical (y) coordinates. We refer to these curves as oblique. 

Typically, these outline curves are also convex. It is crucial to maintain their obliquity and/or convexity 

throughout the stretching process. The primary contribution of this paper is an algorithm designed to 

interpolate a sequence of points while preserving these important properties. 

A dynamic character in a document can have varying amounts of stretching, which may change as the 

document is edited. Therefore, the stretching algorithm should be efficient enough to be applied in 

real-time while the document is being rendered. 

This method should be anchored in cubic BézIER curves and must uphold the principle of obliquity, 

ensuring the monotonicity of both the abscissas and ordinates of the points in the sequence. Additionally, 

it is essential to maintain the convexity properties. When processing a specific point in the sequence, the 

interpolation method will aim to minimize processing time by focusing on a small number of neighboring 

points, thereby enhancing processing locality at each point. 

This interpolation method, as extension of that in [3], will be even more useful and applicable if it can 

accommodate not only convex sequences but also those with some inflections. This development is 

particularly interesting given our observations that the Persian calligraphic style we are beginning to study 

can exhibit inflections in its stretchable parts. 

Prior work 

Spline interpolation has garnered significant interest over the years. Several books have been published on 

the subject, including works by DE BooR [7], Spatн [20], and Knott [12]. Additionally, numerous articles 

have addressed the topic, such as those by FRItscн [9] and DoUgнERtY [8]. Research on spline-based 

interpolation continues to evolve, focusing on specific objectives within particular domains [17] or seeking 

to enhance optimality [6, 23]. 

BézIER curves have been utilized in the design of fonts for typographic systems, including TrueType [25], 

Type1 [1], CurExt [14], Al-Qalam [19], and BaYaR [4]. 

When certain segments of the outline curve are monotonic in the x-direction (or in the y-direction), a 

common approach is to interpolate the control points using a scalar spline. This involves treating that 
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RT =
  

σTx, yTy
 

: 0 ≤ σ, y ≤ 1
 
, is the vector rectangle with direction (or diagonal, or base) T. 
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part of the outline as the graph of a function y = ƒ (x) (or x = ƒ (y)). This is the procedure followed in 

the references cited at the beginning [7–9, 12, 20]. In certain studies, the developed methods focused on 

preserving monotonicity [8,9,12] and convexity [8,9]. The approach discussed in [8,9] includes additional 

measures to maintain shape properties, such as modifying derivatives in cases where these shape properties 

have been compromised. 

From the perspective of BézIER curves, scalar interpolation —expressed as yi = ƒ (xi) or, more generally, 

y = ƒ (x)— results in BézIER curves characterized by linear (degree 1) abscissa functions. Often, utilizing 
BézIER curves with linear abscissa functions diminishes the ability to effectively capture the outlines of a 

shaded area with a minimal number of curves. 

This paper is organized as follows: In Section 2, we will define the concept of vector rectangles and 

rectangular inversions. Section 3 presents and analyzes convex and mono-inflective BézIER curves. In 

Section 4, we investigate oblique cubic BézIER curves. Section 5 focuses on oblique BézIER curves 

generated from specific sets of characteristic vectors and their relationship to vector rectangles. In Section 

6, we describe our interpolation algorithm and explore some of its properties. Section 7 presents various 

applications of the method. The paper concludes with a summary of findings and future perspectives. 

 

VECTOR RECTANGLE - RECTANGULAR INVERSION 

Vector rectangle 

Let T =
 

Tx, Ty
  

be an oblique vector (T is oblique if Tx ≠ 0 and Ty ≠ 0) in R2.  The set of vectors 

 
The plane R2 minus the coordinate axes consists of four quadrants, which we will denote by Q1, Q2, 

Q3, and Q4, in counterclockwise order, starting with the positive quadrant (the vectors with x > 0 and 

y > 0). Note that each quadrant contains only oblique vectors. To each quadrant Q is associated the 

closed quadrant Q. The latter is Q extended by bounding half-axes. The direction vector T of any vector 

rectangle RT is contained in a single quadrant. On the other hand, RT is contained in the corresponding 
closed quadrant. This results in four types of vector rectangles (see Figure 2). 

 

Figure 2: Quadrants and examples of vector rectangles 
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T 
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rTx, rσTy
 

: 0 ≤ σ, r ≤ 1
  

R 
  

rσTx, rTy
 

: 0 ≤ σ, r ≤ 1
  

R−  
  

R+ 
 

 

It’s interesting to have a practical way for determining whether a vector  = belongs to a vector 

rectangle RT , where T = Tx, Ty . By considering the different cases based on the quadrants, we can 

analyze and establish the following: 

 

U ∈ RT →→ (Tx − Ux) .Ux ≥ 0 and 

Ty − Uy .Uy ≥ 0 
 

 

Figure 3: Positive R+ and negative R− parts of the vector rectangle RT , U ∈ R+ and V ∈ R− 
T T T T 

 
 

 

In this context, the notation U ×V represents the cross product of two vectors U and V in R2, defined as the 
scalar UxVy − UyVx. The subsets R+ and R− represent the two halves of the vector rectangle RT , which are 

T T 

bounded by the diagonal DT = {σT : σ ∈ [0, 1]}. Specifically, R+ is the half that lies clockwise from T. 

Both subsets include the diagonal DT (refer to Figure 3). When a vector U belongs to a vector rectangle 
RT , this belonging is signed. The sign depends on whether Uis in R+ or R−. 

T T 

We can define the subsets R+ and R− explicitly as follows: 
T T 

 

• R+ = {U ∈ RT : U × T ≥ 0} 

• R− = {U ∈ RT : U × T ≤ 0} 

It is also helpful to represent these sets in a parametric form. We have: 

+ = 
T 

− = 
T 

Below, we state a few useful properties about vector rectangles. 

Property 1. Let T =
 

Tx, Ty
 

be an oblique vector in R2. Let U ∈ RT , then we have: 

• (T − U) ∈ RT 

• T − U and U have opposite belonging signs with respect to RT 
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T 

T 

T 

Definition 1 (Rectangular Inversion). Let T =
 

Tx, Ty
 

be a vector in (R∗)2. We call rectangular Inversion 

T T T T 

Proof. 

Let T = Tx, Ty and U ∈ RT . 

So, ∃ (σ, y) ∈ [0, 1]2 such that U = 

T − U =
 

(1 − σ) Tx, (1 − y) Ty
 
. 

 

 

σTx, yTy . 

Then (T − U) ∈ RT since (1 − σ, 1 − y) ∈ [0, 1]2. 

We have (T − U) × T = −U × T. 

Consequently, (T − U) and U have opposite belonging signs to RT . 

 

Rectangular inversion 

Rectangular inversion is a mathematical tool we have identified as essential for developing our interpolation 

method. This transformation is defined based on an oblique vector in R2. While we will not provide details 

on how this transformation was built, we will present its definition directly. 

 

of vector T, denoted ΩT , the transformation, whose associated matrix is MT = 
0 Tx/Ty 

Ty/Tx 0 

It’s easy to check that rectangular inversions meet the following interesting properties. 

Property 2. Let T ∈ (R∗)2 (Tx ≠ 0 and Ty ≠ 0). The transformation ΩT designates the rectangular inversion 

relative to T. We have the following properties: 

 

(1) Ω2 = I2, I2 is the identity on R2. 

(2) ∀U ∈ R−

 
respectively U ∈ R+

 
, then ΩT (U) ∈ R+

 
respectively ΩT (U) ∈ R−

 
. 

(3) Let Q be the quadrant of R2 containing T. Then we have: 

 

(i) ΩT (Q) = Q and ΩT

 
Q

 
= Q. 

 

(ii) ∀U ∈ Q, U × T = T × ΩT (U). 

 

Proof. 

Case Property 2(1): 

Let T ∈ (R∗)2 and MT be the matrix associated with the rectangular inversion ΩT . After calculations, 

we find that M2 is equal to the unit matrix. 

Case Property 2(2): 

We do the proof for one case and one quadrant only. It will be the same for the others. 

Let U ∈ R2 be such that U ∈ R−. 
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MT · Ut =
 

rTx, rσTy
 t 

T 

T 

    

        

    

    

Ty Tx 

Ty x Ty Tx y Tx 

We have: 

Assume that T ∈ Q1. 

U ∈ R−, so U =
 

rσTx, rTy
 
, (r, σ) ∈ [0, 1]2. 

 

So ΩT (U) = rTx, rσTy 

We conclude that ΩT (U) ∈ R+. 

Case Property 2(3): 

Sub-Case Property 2(3)-(i): 

Let U ∈ Q resp U ∈ Q . 

Assume that U = Ux, Uy  and T = Tx, Ty . 

Ux and Tx are of the same sign. 

Also Uy and Ty are of the same sign. 

ΩT (U) =
  

Tx Uy, 
Ty Ux

  

Tx

 
Tx Uy

 
= T2 

Uy ≥ 0 and Ty

 
Ty Ux

 
= T2 Ux ≥ 0 

 

Hence ΩT (U) ∈ Q res ΩT (U) ∈ Q . 

Sub-Case Property 2(3)-(ii): 
T × ΩT (U) =  Tx 

Ty Ux − Ty Tx Uy 
Tx Ty 

=  TyUx − TxUy 

= U × T 

 
CONVEX/MONO-INFLECTIVE CUBIC BÉZIER CURVES 

Basic types 

We will denote the two-dimensional BézIER curve with control points P0, P1, P2, and P3 as [P0, P1, P2, P3]. 
The portion of the curve that lies within the convex hull defined by these control points is parameterized 
over the interval [0, 1]. The endpoints of the curve are given by B (0) = P0 and B (1) = P3. The vectors 

U = P1 − P0 and V = P3 − P2 represent the directions of the derivatives of the curve at points P0 and P3, 

respectively. The vector T = P3 − P0 is referred to as the base of the curve. 

Thus, the curve can be expressed as either [P0, P0 + U, P3 − V, P3] or alternatively as [P0, P0 + U, P0 + T − V, T + P0] 
when needed. Figure 4 illustrates these notations. 

It is important to note that the study of the geometric characteristics of BézIER curves has been conducted 

only over the interval [0, 1]. It is well known [11, 21] that a BézIER curve can take various forms, such as 

an arch, have a single inflection point, possess two inflection points, exhibit a cusp, or form a loop (see 

Figure 5). 
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Figure 4: Point and vector characteristics of a BézIER curve 
 

 

 

 

 

(a) (b) 
 

 

 

. . 

  
 

(c) (d) (e) 

Figure 5: A two-dimensional Bézier arch (a), two-dimensional Bézier curve with one inflection point (b), 

two inflection points (c), a cusp (d) and a loop (e) 

 

 

 

 

 

Convex cubic BézIer curves 

A BézIER arch [P0, P1, P2, P3] is defined as a curve that has non-zero curvature everywhere, although 

it may or may not be convex as a set of points (see Figure 6). The curve is convex if and only if 
the polygon (P0, P1, P2, P3) is convex.  This condition can be verified by ensuring that the sign of 

(Pi − Pi−1) × (Pi+1 − Pi) is constant for all i from 0 to 3 (with indices evaluated modulo 4). 

When the curve is expressed as [P0, P0 + U, P0 + T − V, T + P0], convexity is guaranteed by the fact that 

U × (T − V), (T − U) × V, U × T, and T × V all have the same sign. 
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Table 1: Processing details: control points and curvature function 
 

Curve P0 P1 P2 P3 Γ (t) 

Ba (10, 10) (−20, 40) (20, 70) (0, 100) 70200 · t − 37800 

Bb (50, 138) (76, 165) (56, 180) (93, 170) 33012 · t2 − 56142 · t + 16740 

Bc (20, 30) (60, 60) (30, 65) (80, 30) 86400 · t2 − 91800 · t + 19800 
 

 

 

 

 

P1 
 

P3 

P 

Figure 6: Convex Bézier arch (left) and non-convex Bézier arch (right) 

 

 

 

 

Mono-inflective cubic BézIer curves 

The application of BézIER curves across various fields relies on the section of the curve that lies within the 
convex hull defined by its control points. From a parameterization perspective, we focus on the segment 

of the curve corresponding to the interval [0, 1]. 

In addition to exploring convex curves, we are also interested in BézIER curves that have a single inflection 
point within the parameterization of [0, 1]. This includes curves with one overall inflection point (see 

Figure 7a) or BézIER curves that have two inflection points, of which only one is parameterized in [0, 1] 
(see Figure 7b). Precisely, in Figure 7b, I1 lies within the convex hull defined by the points P0, P1, P2 and 

P3 (parameterized on [0, 1]), whereas I2 lies outside this convex hull. The numerical values defining the 

curves on Figure 7 are given on Table 1. 

Throughout this article, we will refer to a curve with only one inflection point within the interval[0, 1] 

as mono-inflective. In Figure 7, inflection points are indicated by a round graphic bullet on a white 
background, labeled by the letter "I" and indexed as needed. 

Additionally, we provide an example of a BézIER curve that contains two inflection points within the 

interval [0, 1] to clarify the concept of a mono-inflective curve in this range and to derive the necessary 

condition for this scenario. 

To differentiate between the cases presented in Figure 7a and Figure 7b, we analyze the determinants of 

BJ (t) and BJJ (t). Given that B (t) = ( X (t) ,Y (t)), we define Γ (t) = det (BJ (t) , BJJ (t)), which corresponds 

to the expression in Formula (2). 

 

Γ (t) = XJ (t) YJJ (t) − XJJ (t) Y J (t) (2) 

 

 

0 
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(a) 

 

P0 
. 

 
(b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

P0 . . P3 
 

 

(c) 

Figure 7: Inflective cubic Bézier curves: a single global inflection point (a), two inflection Points, one 

inside and one outside [0, 1] (b) and two inflection points inside [0, 1] (c) 

 
Upon finalizing the calculations, we find that the function Γ is typically of degree at most two. The value 

Γ (t) can be expressed in the form given by Formula (3). 

 

Γ (t) = A2t2 + A1t + A0 (3) 

Solutions to the equation Γ (t) = 0 indicate the presence of inflection points. The discriminant Δ on 

Formula (4) becomes an important quantity. In [22, 24], it is shown that: 

 

Δ = A2 − 4A2 A0 (4) 

 

• If A2 = 0, then Γ (t) is of degree 1 and has a single solution, resulting in only one inflection point. 

• If Δ > 0, there are exactly two inflection points. 

• If Δ < 0, a node is present. 

• If Δ = 0, a cusp is formed. 

 

In the first case of curves, as illustrated in Figure 7, the degree is one, which means there is only one 

solution. Consequently, the curve has a single inflection point. 

In the other two curve cases, Γ (t) is a trinomial that allows for two solutions. For the second curve, the 

curvature vanishes at one point within the interval [0, 1] and at another point outside this interval. As a 

result, one inflection point lies inside the convex hull, while the other lies outside. 
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In the final curve case, both solutions are located within the interval [0, 1], so both inflection points are 

contained within the convex hull. 

A summary of the processing details for curves Ba, Bb and Bc, relatively to Figure 7, is provided in Tables 

1 and 2 for verification. 

Table 2: Processing details: parameters and inflection points 
 

Curve Parameters and Inflection Points 
 

Ba 
t ≃ .5384 – 

I = (2.1302, 58.4615) – 

Bb 
t1 ≃ .3856 t2 ≃ 1.315 

I1 = (65.4634, 163.136) I2 = (148.164, 152.698) 

Bc 
t1 ≃ .3009 t2 ≃ .7616 

I1 = (41.1811, 49.8819) I2 = (55.8477, 48.4152) 

 
We have previously mentioned that the types of curves relevant to this research are convex and mono- 

inflective ones, which are parameterized on the interval [0, 1]. Based on the figures of the curves we’ve 

examined so far, we can identify two important properties—perceived graphically—that characterize cubic 

BézIER curves. 

Consider the BézIER curve B = [P0, P1, P2, P3]. We have the following observations: 

 

1. If the line segments [P0, P1] and [P2, P3] intersect  i.e., [P0, P1] ∩ [P2, P3] ≠ ∅ , then the curve B 

has either two inflection points, a cusp, or forms a loop. 

2. If the line segments [P0, P1] and [P2, P3] do not intersect  i.e., [P0, P1] ∩ [P2, P3] = ∅ , this is a 

necessary condition for the curve B to be an arch (whether convex or not) or to be mono-inflective. 

 
As for a convex BézIER curve, we have an accurate way to check if a BézIER curve is mono-inflective. 
Let B = [P0, P1, P2, P3] be a cubic BézIER curve where [P0, P1] and [P2, P3] do not intersect. The 

vectors U, V and T are such that B = [P0, P0 + U, P0 + T − V, P0 + T]. The curve B is mono-inflective if 

(P1 − P0) × (P2 − P1) and (P2 − P1) × (P3 − P2) are of opposite sign. The same thing is expressed as: 

U × (T − V) and (T − U) × V are opposite in terms of the sign. 

We introduce a few notations to facilitate mathematical expression and formalization. 

Let U1 and U2 be two vectors in R2. We denote U1 33 U2 to indicate that U1 and U2 are collinear and point 

in the same direction. 

When n vectors U1, . . ., Un are linearly independent, we refer to them as "free" vectors; conversely, if they 

are linearly dependent, we call them "linked" vectors. In this case, the set {U1, . . . , Un} is said to be free 

or linked, depending on the context. 
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OBLIQUE CUBIC BÉZIER CURVES 

Obliquity: definitions, types and properties 

We define a BézIER curve B (t) = ( X (t) ,Y (t)) in R2 as oblique if the functions X (t) and Y (t) are strictly 

monotone on the interval [0, 1]. 

We say that an oblique BézIER curve B is of type Ti, for 1 ≤ i ≤ 4, if its base vector T = B (1) − B (0) 

is in quadrant Qi. We can visually observe that the base vector T of an oblique cubic BézIER curve is 

necessarily located in a quadrant. This means that vector T can never be strictly horizontal or vertical. 

The study conducted in this section on oblique curves will, without loss of generality, take place in the first 

quadrant Q1. We present some useful lemmas and a theorem that will aid in developing the interpolation 

method. 

Lemma 1. Let B = [P1, P1 + U1, P2 − U2, P2] a cubic BézhxR curve and {U1, U2} a set (not necessarily 

free) of non-null vectors. Consider T = P2 − P1 such that T is in Q1 (T is oblique). Assume that {U1, T } 
and {U2, T } are free sets and the vectors U1 and U2 satisfy the condition: U1, U2 ∈ R− or U1, U2 ∈ R+. 

T T 

Then B is oblique. 

Proof. 
 

 

Figure 8: Lemma 1 conditions on Q1 quadrant 
 
Assume that U1 ∈ R− and U2 ∈ R−. The proof remains the same if both U1 and U2 are in R+. 

Then U1 = (r1σ1Tx, r1Ty) and U2 = (r2σ2Tx, r2Ty) where 0 ≤ σ1, σ2 ≤ 1 and 0 < r1, r2 ≤ 1 

Let us prove that B is oblique. 

Consider that B (t) = ( X (t) ,Y (t)) for t ∈ [0, 1]. 
Let us demonstrate that XJ (t) and YJ (t) do not change in sign on [0, 1] and so X (t) and Y (t) are monotonic. 

All calculations done, we have: 

XJ (t) =  Tx

 
(9r1σ1 − 6 + 9r2σ2) t2+ 

 

 

3r1σ1

  

Y J (t) = Ty

 
(9r1 − 6 + 9r2) t2+ 

 

 

3r1

  

 

 
(5) 

 

 

 

(6) 

(−12r1σ1 + 6 − 6r2σ2) t+ 

(−12r1 + 6 − 6r2) t+ 
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To study the signs of XJ (t) and Y J (t), it suffices to examine the signs of the functions F and G defined in 

(7) and (8). 
 

F (t) = (9r1σ1 − 6 + 9r2σ2) t2+ 

(−12r1σ1 + 6 − 6r2σ2) t+ 
3r1σ1 

G (t) = (9r1 − 6 + 9r2) t2+ 

(−12r1 + 6 − 6r2) t+ 
3r1 

 

(7) 

 

 

(8) 

We will begin by examining the sign of G (t), which will help us deduce the sign of F (t). The analysis 

of the sign of G (t) depends on two variables, r1 and r2, and is not straightforward to carry out directly. 

Instead, we will approach this by studying GJ (t). The expression for GJ (t) can be found on Formula (9). 

GJ (t) = 6 ((3r1 + 3r2 − 2) t − 2r1 − r2 + 1) (9) 

GJ (t) is an affine function and therefore has a single root, ty, which is found in Formula (10): 

t = 
 2r1 + r2 − 1  

y 3r1 + 3r2 − 2 

 

(10) 

We aim to study the sign of Y J on [0, 1]. To do this, we need to analyze the cases where ty belongs to 

[0, 1]. 
The value of ty, which is a function of r1 and r2, highlights two straight lines, which are subsets of R2. 

These lines are denoted (D1) and (D2) as described in Formulas (11) and (12). 

(D1) : 2r1 + r2 − 1 = 0 (11) 

 

(D2) : 3r1 + 3r2 − 2 = 0 (12) 

To the straight lines (D1) and (D2), correspond the functions D1 and D2 such that: 

D1 :  R2 −→ R 

(r1, r2) −→ 2r1 + r2 − 1 

D2 :  R2 −→ R 

(r1, r2) −→ 3r1 + 3r2 − 2 

 

(13) 

 

(14) 
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D2 (r1,r2) 

r2 
 

 

 

 

 

 

 

 

r1 

 

 

Figure 9: Sign areas of ty as a function of r1 and r2 

 

 

 
The fact that r1, r2 ∈ [0, 1] and considering the straight lines in R2, (D1) and (D2), in Figure 9, the ranges 

of (r1, r2) for which ty > 0 and ty < 0 are shown. We must remember that ty = D1 (r1,r2) . 

There are three cases to consider: 

Case 1 : ty < 0. 
This case is feasible, we proceed with the following: 
(r1, r2) = (7/12, 1/24), D1 (7/12, 1/24) =  5  , D2 (7/12, 1/24) = − 1 , ty,(7/12,1/24) = − 5 . 

24 8 3 

or 
(r1, r2) = (1/12, 7/9), D1 (1/12, 7/9) = −  1 , D2 (1/12, 7/9) =  7 , ty,(1/12,7/9) = −  2 . 

18 12 21 

In this case, GJ (t) doesn’t change sign on [0, 1]. 
Thus, G is strictly monotone on [0, 1]. 

Given that G (0) = 3r1 > 0 and G (1) = 3r2 > 0, we have G (t) > min (3r1, 3r2) > 0 ∀t ∈ [0, 1]. 
Therefore, Y J (t) > 0, ∀t ∈ [0, 1]. 

Consequently, Y (t) is strictly increasing on [0, 1]. 

Case 2 : ty > 1. 
This case is feasible, we proceed with the following: 
(r1, r2) = (5/6, 1/24), D1 (5/6, 1/24) = 17 , D2 (5/6, 1/24) = 5 , ty,(5/6,1/24) = 17 . 

24 8 15 

or 
(r1, r2) = (1/12, 1/2), D1 (1/12, 1/2) = − 1 , D2 (1/12, 1/2) = − 1 , ty,(1/12,1/2) = 4. 

3 4 3 

The same reasoning as before is applied to conclude that Y (t) is strictly increasing on [0, 1]. 

Cas 3 : 0 ≤ ty ≤ 1. 
This case is well feasible, we take the following for examples: 
(r1, r2) = (2/3, 1/2), D1 (2/3, 1/2) = 5, D2 (2/3, 1/2) = 3, ty,(2/3,1/2) = 5 . 

6 2 9 

Or 
(r1, r2) = (1/3, 1/6), D1 (1/3, 1/6) = − 1 , D2 (1/3, 1/6) = − 1 , ty,(1/3,1/6) = 1 . 

6 2 3 

Let us prove that Y (t) is strictly increasing. We recall that the sign of the function G is the same as that 

of YJ. We have: 

G (0) = 3r1 > 0 ∀r1 ∈ ]0, 1] and 

(1, 1) 

 
2 .  
3 

1 
3 

 

 
 

1  1  2 
3  2  3 
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We have then G
 

ty
 

−3 . 

G (1) = 3r2 > 0 ∀r2 ∈ ]0, 1]. 
If we can demonstrate that G ty  ≥ 0, then G does not change sign on [0, 1], which implies that Y (t) 

is strictly increasing on [0, 1]. 
The value of G ty is a function of r1 and r2 as outlined in Formula (15). 

r2 − 2r + r r − 2r + r2 + 1 

G
 

t 
 
= −3 1 

1 1 2 2 2 
 

 

(15) 

Let us study G ty as a function of r1 and r2 on [0, 1]2. 

We have, 0 ≤ ty ≤ 1: 

 

GJ
 

ty
  

 
 

 

We recall that GJ (t) is affine and, so there are two cases that fall under Case 3: 

1. GJ (0) < 0 and GJ (1) > 0 

2. GJ (0) > 0 and GJ (1) < 0 

To begin analysing the sign of G ty , we define two functions ƒy and gy, as shown in Formulas (19) and 

(20). 
 

ƒy :  R2 −→ R 
(r1, r2) −→ r2 − 2r1 + r1r2 − 2r2 + r2 + 1 (19) 

1 2 

gy :  R2 −→ R 

(r1, r2) −→ 3r1 + 3r2 − 2 

 

(20) 

= 
 ƒy (r1,r2) 

gy (r1,r2) 

Case 3-1 : GJ (0) < 0 and GJ (1) > 0 

In this case ty represents a minimum of G. 

Analysing the sign of ƒy on [0, 1]2 is challenging without delving into optimization concepts. 

Let us study the extrema of ƒy on [0, 1]2. 

The signs of GJ (0) and GJ (1) highlight two functions D3 and D4 defined in Formulas (21) and (22) 

as well as the the two affine lines (D3) and (D4) defined in (23) and (24). 

D3 :  R2 −→ R 

(r1, r2) −→ −12r1 − 6r2 + 6 

D4 :  R2 −→ R 

(r1, r2) −→ 6 r1 + 12 r2 − 6 

 

(21) 

 

(22) 

3r1 + 3r2 − 2 
y 

 
= 0 (16) 

GJ (0) = −12r1 − 6r2 + 6 (17) 

GJ (1) = 6 r1 + 12 r2 − 6 (18) 
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ƒ 1 2 

    

 

(D3) : −2r1 − r2 + 1 = 0 (23) 

(D4) : r1 + 2r2 − 1 = 0 (24) 

GJ (0) < 0, i.e. D3 (r1, r2) < 0, provides the constraint denoted (C1): 

(C1) : −2r1 − r2 + 1 < 0 (25) 

GJ (1) > 0, i.e. D4 (r1, r2) > 0, provides the constraint denoted (C2): 

(C2) : −r1 − 2r2 + 1 < 0 (26) 

Let us study the extrema of ƒy under the constraints (C1) and (C2). 
The variables r1 and r2 must adhere to the constraints (C3), (C4), (C5) and (C6) specified on Formulas 

(27)–(30). 
r2 

 

 

 

 

 

 

 

 

r1 

 

 

Figure 10: Optimization areas relative to different signs of GJ on 0 and 1 

(C3) :r1 − 1 ≤ 0 (27) 

(C4) : − r1 ≤ 0 (28) 

(C5) :r2 − 1 ≤ 0 (29) 

(C6) : − r2 ≤ 0 (30) 

The constraints (C1), (C2), (C3), (C4), (C5) and (C6) enable us to draw the graphic on Figure 10. 

(A1) : (r1, r2) ∈ R2/(r1, r2) ∈ 
6 

∩ (Ci) 
i=1 

 

(31) 

The subset of [0, 1]2 where GJ (0) < 0 and GJ (1) > 0 is defined as the set (A1) in Formula (31). 

The set (A1) is the gray area shown in Figure 10. This is the compact of segment-shaped edges 

bounded by points q0, q1, q2 and q3. 

Let’s find the minimum of ƒy on (A1). 
The set (A1) is closed and bounded. 

So, according to WEIRstRass, ƒy has a minimum on (A1). 
The gradient of ƒy is : 

∇ (r , r ) = 
2r1 + r2 − 2 

. 

r1 + 2r2 − 2 

  

 
2 

  
 

1/2 

3 q5 

1 

 

 

q q 
o 

4 3 

1  1  2 
3  2  3 
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g (r ,r ) 

The function ƒy has only one critical point, which is located at m = (2/3, 2/3). This critical point is 

contained within (A1). 

Let Hy be the hessian matrix relative to ƒy. 

We have H = 
2  1 

1  2 
The matrix Hy is positive-definite. So, ƒy is strictly convex on (A1). 
Hence m = (2/3, 2/3) is the unique minimum relative to ƒy on (A1). 
We have ƒy (2/3, 2/3) = −1/3 < 0. 

Notice that the objective is to determine the sign of ƒy on (A1). 
Let us study the sign of ƒy on the boundary of (A1). 

/ r (S) : denotes the boundary of a given set S. 

Let (r1, r2) ∈ / r (A1), (r1, r2) is in one of the four following cases : 

• (r1, r2) ∈ [q0, q3], r1 = 1 − 2r2, let q ∈ [q0, q3], then q = (1 − 2r2, r2) 
ƒy (q) = ƒy (1 − 2r2, r2) = r2 (3r2 − 1) 

We have ƒy (q) ≤ 0 since (r1, r2) ∈ [q0, q3] and so 0 ≤ r2 ≤ 1/3. 

• (r1, r2) ∈ [q0, q1], r2 = 1 − 2r1, let q ∈ [q0, q1], then q = (r1, 1 − 2r1) 
ƒy (q) = ƒy (r1, 1 − 2r1) = r1 (3r1 − 1) 

We get that ƒy (q) ≤ 0 since (r1, r2) ∈ [q0, q1] and so 0 ≤ r1 ≤ 1/3. 

• (r1, r2) ∈ [q1, q2], r2 = 1, let q ∈ [q1, q2], then q = (r1, 1) 
ƒy (q) = ƒy (r1, 1) = r1 (r1 − 1) 

We have ƒy (q) ≤ 0 due to the fact that if (r1, r2) ∈ [q1, q2] then 0 ≤ r1 ≤ 1. 

• (r1, r2) ∈ [q2, q3], r1 = 1, let q ∈ [q2, q3], so q = (1, r2) 
ƒy (q) = ƒy (1, r2) = r2 (r2 − 1) 

We get ƒy (q) ≤ 0 due to the fact that if (r1, r2) ∈ [q2, q3] then 0 ≤ r2 ≤ 1. 

We observe that ƒy is negative on the boundary of (A1) and has a minimum m strictly interior to 

(A1) where ƒy (m) < 0. So, ƒy is negative on (A1) as a whole, otherwise we’ll lose out in terms of 
convexity. 

Hence: 

ƒy (r1, r2) ≤ 0 ∀ (r1r2) ∈ A1 

Now let’s look at the sign of gy. 

Let (r1, r2) ∈ (A1) 

Then (r1, r2) satisfies (C1) and (C2). 

(C1) + (C2) =→ −3r1 − 3r2 + 2 ≤ 0 

=→ gy (r1, r2) ≥ 0 

So, on (A1), with gy (r1, r2) ≠ 0, we get that gy (r1, r2) > 0 

We then deduce that −3  ƒ
y (r1,r2) ≥ 0 on [0, 1]2. 

y  1  2 
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Thus, we get that G ty ≥ 0 over [0, 1]2 

Given that ty is a minimum of G on [0, 1], then G (t) ≥ 0, ∀t ∈ [0, 1]. 
So, Y J (t) ≥ 0, ∀t ∈ [0, 1]. 

Therefore, Y (t) is increasing on [0, 1]. 
With the feasible values of r1 and r2 meeting the constraints of inscription in the affine rectangle and 
considering the cases where vectors U1, U2 and T are not null, we can conclude that Y (t) is strictly 

increasing on [0, 1]. 

Case 3-2 : GJ (0) > 0 and GJ (1) < 0 

The subset of [0, 1]2 where GJ (0) > 0 and GJ (1) < 0 is defined as the set (A2) shown in Figure (10). 

In this case, at ty there is a maximum of G on [0, 1]. 
We have : 

 

So, G
 
ty

 
≥ 0 ∀t ∈ [0, 1] 

G (0) = 3r1 > 0 ∀ r1 ∈ ]0, 1] 

G (1) = 3r2 > 0 ∀ r2 ∈ ]0, 1] 

Due to the uniqueness of the optimum ty on [0, 1] We get that G (t) ≥ 0 ∀t ∈ [0, 1]. 
It follows that Y J (t) ≥ 0 ∀t ∈ [0, 1] 

So Y (t) is increasing on [0, 1]. 
With the feasible values of r1 and r2 meeting the constraints of inscription in the affine rectangle and 
considering the cases where vectors U1, U2 and T are not null, we can conclude that Y (t) is strictly 

increasing on [0, 1]. 

Now it’s time to show that X (t) is also strictly increasing on [0, 1]. 
To analyze the sign of XJ (t), we need only to study that of F (t) defined in (7). 

We’ll use the function G (t) (having the same sign as Y J (t)), given in (8), to deduce that of F (t). For ease 

of reference, let’s rewrite the G function and the results we’ve found: 

G (t) = (9r1 − 6 + 9r2) t2 + (−12r1 + 6 − 6r2) t + 3r1 
We proved before the following result: 

∀ (r1, r2) ∈ [0, 1]2 , G (t) ≥ 0, ∀t ∈ [0, 1] (32) 

Function F is written as: 

F (t) = (9r1σ1 − 6 + 9r2σ2) t2+ 

(−12r1σ1 + 6 − 6r2σ2) t + 3r1σ1 

r1, r2, σ1, σ2 ∈ [0, 1]4 et t ∈ R 

Let y1 = r1σ1 and y2 = r2σ2. 

Then we have y1 ∈ [0, 1] and y2 ∈ [0, 1]. 
The formula of F (t) becomes : 

F (t) = (9y1 − 6 + 9y2) t2+ 

(−12y1 + 6 − 6y2) t + 3y1 

According to (32), we have: 

∀ (y1, y2) ∈ [0, 1]2 , F (t) ≥ 0, ∀t ∈ [0, 1]. 
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x y 

T T T T 

Finally, we get the result on (33): 

∀ (r1, r2, σ1, σ2) ∈ [0, 1]4 , F (t) ≥ 0, ∀t ∈ [0, 1] (33) 

From this, we get that XJ (t) ≥ 0 on [0, 1] and thus X (t) is increasing on [0, 1]. 
With the possible cases of r1, r2, σ1 and σ2 meeting the constraints of inscription in the vector rectangle 

and considering the cases where vectors U1, U2 and T are not null, X (t) is strictly increasing on [0, 1]. 

We conclude that the BézIER curve B is oblique. 
 

 
We deal now with the case where the vector U1 and U2 participating in the definition of the BézIER curve 

are in opposite sign in belonging to RT . 

Lemma 2. Let B = [P1, P1 + U1, P2 − U2, P2] a cubic BézhxR curve. Consider T = P2 − P1 such that T is 

in Q1 (T is strongly oblique). Assume that {U1, T } and {U2, T } are free sets. Vectors U1 and U2 meet the 

condition: U1 ∈ R− and U2 ∈ R+ or U1 ∈ R+ and U2 ∈ R− . Then B is oblique. 

 
Proof. 
Assume that that U1 ∈ R− and U2 ∈ R+ (the proof remains the same when U1 ∈ R+ and U2 ∈ R−). 

T T T T 

The change, comparing to the proof done before, would happen in U2 parameterizing. 

Let U1 = (r1σ1Tx, r1Ty) and U2 = (r2Tx, r2σ2Ty) where 0 ≤ σ1, σ2 ≤ 1 and 0 < r1, r2 ≤ 1 

Given that B (t) = ( X (t) ,Y (t)) for t ∈ [0, 1], all calculations done, XJ(t)/T  and Y J(t)/T  are on Formula (34) 
and (35) 

XJ(t)/T = (9r σ − 6 + 9r ) t2+ 
x 1  1 2 

(−12r1σ1 + 6 − 6r2) t+ 
3r1σ1 

(34) 

Y J (t)/T = (9r − 6 + 9r σ ) t2+ 
y 1 2  2 

(−12r1 + 6 − 6r2σ2) t+ 
3r1 

Let µ1 = r1σ1, then µ1 describe the interval [0, 1]. 

Replacing r1σ1 with µ1, Formula (34) becomes like (8). 

So, X (t) is strictly increasing on [0, 1]. 

Following the same method, we get that Y (t) is strictly increasing on [0, 1]. 
We conclude that B is oblique. 

(35) 

 

 

 
The aforementioned cases concerning the positions of U1 and U2 in RT and their relationship with the 

vector T are not the only ones. In fact, other situations exist such as when U1 33 T, U2 33 T or U1 33 U2 33 T. 

However, the sequences considered in this paper concern the non-degenerate cases. In such cases, and as 
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 1 

 
R+ 

 

 
2 

we’ll see, we won’t have the degenerate position cases; U1 33 T, U2 33 T or U1 33 U2 33 T, because of the 

way we use to construct directions at points in the sequence. 

The lemmas seen before, Lemma 1 and Lemma 2, are bases to state and prove the following theorem. 

Theorem 1. Consider U1, U2 and T three non null vectors in R2 such that T ∈ Q1 and U1, U2 ∈ RT . Let 

B = [P1, P1 + U1, P2 − U2, P2] where P2 − P1 = T. Assume that {U1, T } and {U2, T } are free sets. Then B 
is oblique. 

 

It is interesting to cite all the possible cases of the oblique cubic BézIER curves defined based on the state 

of vector’s belonging to vector rectangle. The idea is presented with using figures and discussing cases 

for more clarification. 

 
1. U1, U2 ∈ R− or U1, U2 ∈ R+ 

T T 

This case is illustrated on Figure 8 considering that U1, U2 ∈ R−. The curve is oblique with one 

inflection point. In fact, in this case the arms [P0, I1] and [P2, I2] don’t intersect and U1 × (T − U2) 
and (T − U1) × U2 are of opposite sign. 

2. 
U1 ∈ R− and U2 ∈ R+

 
or

 
U1 ∈ R+ and U2 ∈ R−

  

The case is illustrated on Figures 11–13 with U1 ∈ R− and U2 ∈ R+. A curve satisfying this 
constraint is oblique and can be convex (see Figure 11), mono-inflective (see Figure 12) or can have 

two inflection points (see Figure 13). 
 

 

 

 

 

Figure 11: Lemma 2 conditions 

- Oblique convex Curve 

Figure 12: Lemma 2 condi- 

tions - Oblique mono-Inflective 

Curve 

Figure 13: Lemma 2 conditions 

- Oblique Curve with two inflec- 

tion points 

 

Convex oblique curves 

An oblique BézIER curve B = [P1, P1 + U1, P2 − U2, P2] of type Ti that is also convex can be further 

classified into sub−types Ti 
+ and Ti 

− depending on the sign of U1 × T, where T = P2 − P1; that is, whether 

the initial velocity vector BJ (0) = 3U1 lies clockwise or counterclockwise of the base vector T (see Figure 
14). 
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U2 
P2 

2 B (t) 
⊖ 

−U2 

 

 
(a) 

 

 
(b) 

U1 
T 

P1
. 

Figure 14: Examples of convex oblique curves 
of sub−types T + (left) and T − (right) 

Figure 15: Examples of Mono-inflective 

oblique curves of sub−types T + (left) and T − 
(right) 

1 1 

 

Let us consider a BézIER curve B = [P1, P1 + U1, P2 − U2, P2] where P2 − P1 = T, T ∈ Q1 and U1, U2 ∈ RT . 
From Lemma 2, we learn that the only case where B can be oblique convex is the fact that the belonging 

signs of vectors U1 and U2 to RT are opposite. This is a necessary condition. 

Mono-inflective oblique curves 

The aim of our work is to develop a method allowing interpolation of oblique sequences of points in 

the plane with keeping convexity and inflection properties. The oblique curves we are interested to 

are convex and mono-inflective ones. By referring to Lemma 1 and Lemma 2, we find that the mono- 

infelctive, in the non-degenerate case, are of two types depending on whether U1 and U2, with a curve 

B = [P1, P1 + U1, P1 + T − U2, P1 + T], have the same or opposite sign in belonging to RT . Lemma 1 

highlights mono-inflective curves that cross the base T, whereas Lemma 2 reveals ones not crossing the 

base of the curve. We retain the first type as one of the basic curves in interpolation method since this type 

aids in keeping as possible the topology of the sequence of points. 

Like the case of oblique convex BézIER curves, oblique mono-inflective ones (satsifying Lemma 1 of 

course) are of four signed types. Given an oblique BézIER curve B = [P1, P1 + U1, P1 + T − U2, P1 + T], 
then the sign of B is relative to the position of the vector U1 with respect to vector T, as in the case of 

oblique convex curves, i.e. the sign of U1 × T. The sign is not quite the direction of the turning sens 

in the orthonormal reference, as in the case of convex oblique curves, since this direction changes once 

the inflection point is crossed. However, it’s still the direction in which the curve turns from P1 to the 

inflection point. An illustration is given in Figure 15. 

A basic lemma for building mono-inflective BézIER curves from vectors with opposite signs in terms of 

belonging to the vector rectangle is stated (see Lemma 3). The lemma is essential to the interpolation 

process. 

Lemma 3. Let U1, U2, and T be three vectors in R2 two-by-two linearly independent. Assume that T is 

oblique, U1 ∈ RT and U2 ∈ RT where U1 and U2 have opposite sign of belonging to RT . Consider the 

curve B, P1, P2 ∈ R2 such that P2 − P1 = T and B = [P1, P1 + U1, P2 − ΩT (U2), P2]. The transform ΩT 
denotes the rectangular inversion relative to T. Then the curve B is mono-inflective oblique. 

T + U2 1 

 

  

−U 

 (t) 

  

T − 
1 

 
 

 

 

  
2 

 

 
 

 

 2 
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 ̂

U1,x U1,y U2,x U2,y 

U1,x U1,y U2,x U2,y 

Proof. 

U1 × T and T × U2 are of opposite sign. 

According to Property 2(2), ΩT (U2) and U2 are of opposite sign in belonging to RT . 

So U1 and ΩT (U2) belong to the same semi-vector rectangle of RT . 

Applying Lemma 1, we get that the curve B is mono-inflective oblique. 
 

 

OBLIQUE BÉZIER CURVES AND GENERATING SETS 

In the previous sections, we saw that a curve can be expressed in a vector form. From this point of view, 

we notice that a cubic BézIER curve can be generated and studied on the basis of a set of three vectors and 

an origin point. 

Given a set S = {U1, U2, T } of three non-null vectors, the BézIER curve B = [P1, P1 + α1U1, P2 − α2U2, P2], 

such that P2 = P1 + T and α1, α2 ∈ R∗, is said to be generated via S. The point P1 is called  the origin 

of the curve. In the same time, P1 and P2 are named the extremities. The curve can be also written as 

B = [P1, P1 + α1U1, P1 + T − α2U2, P1 + T]. The notion of generating set that we have introduced can be 

applied to all cubic BézIER curves. In this paper, it will be used to study oblique BézIER curves, especially 

convex and mono-inflective ones. Here, the set S = {U1, U2, T } needs to meet some conditions, such as 

that the three vectors U1, U2 and T must belong to the same closed quadrant, with T being oblique. Also, 

we have to notice that it is not mandatory that U1 ∈ RT nor U2 ∈ RT . 

It should be clear that the study of oblique BézIER curves generated by a set S = {U1, U2, T } requires the 

distinction of different cases of relationship between the vectors U1, U2 and T. This leads to two classes 
of cases: non-degenerate and degenerate states. We have to recall that the study of degenerate cases is out 

of the scope of this paper. In a first stage, we will state a lemma for constructing an oblique BézIER curve 
without any constraints on the type (convex, mono-inflective, two-inflective . . . ). The work is carried out 

with respect to the quadrant Q1. 

Let us consider the notations following: 

R̄ : denote R ∪ {−∞, +∞} = [−∞, +∞]. 

inf (a, b): denotes the extended version of “inf” on R and returns the smaller of a and b where a, b ∈ R̄ . 

Lemma 4. Given a set of non-null vectors S = {U1, U2, T } in R2 where U1 = U1,x, U1,x , U2 = U2,x, U2,x 

and T = (Tx, Tx). Consider the quadrant Q1 such that T ∈ Q1 and U1, U2 ∈ Q1. Let α1, α2 ∈ R∗ , P1, P2 ∈ R2 

be such that P2 = P1 + T and B = [P1, P1 + α1U1, P2 − α2U2, P2] the curve generated by {U1, U2, T }. 

Suppose that α1 and α2 verify: α1 < inf  Tx , 
 Ty   

and α2 < inf  Tx , 
 Ty  

. Then B is oblique. 

 

Proof. 

Let h1 = inf   Tx , 
 Ty   

and h2 = inf  Tx , 
 Ty   

. 

For a vector V ∈ R2, V denotes the the angle between the X-axis and the vector V in the counterclockwise 
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, 

+ 

We can check with comparing tan V̂  and tan T̂  that we have: 

Tx 

Vx 

y 

Vy 
= Vy 

Tx 
Vx 

otherwise 

 

 
 

 

 

 
  

 

 

 

 

 

 

   

 

 
 

  

sens. 

 
T 

 
( 

Ty 
if V × T ≤ 0 

With considering the possible values of h1 and h2, we can deduce that h1U1 and h2U2 are two vectors with 

arrow heads exactly on the border of RT (see Figure 16a and Figure 16b for illustration). 

So, h1U1 (resp h2U2) is the vector positively colinear to U1 (resp U2) having the greater magnitude and 

inside RT . 

Thus, for α1, α2 ∈ R∗ such that α1 < h1 and α2 < h2, we get that α1U1 ∈ RT and α2U2 ∈ RT 
According to Theorem 1, B is oblique 

 

 

 

 

(a) (b) 

Figure 16: Generator vectors U1 and U2 (left), Generated vectors h1U1 and h2U2 with heads on the 

boundary of RT . 

 

 

 

To develop an interpolation method that maintains, when needed, convexity, inflections, and general 

topology, it’s important to consider the most convenient types of oblique BézIER curves. These include 

curves that are convex and curves that are mono-inflective crossing their bases. 

Consider curve B = [P1, P1 + α1U1, P2 − α2U2, P2], generated by S = {U1, U2, T }. For curve B to be 

convex, U1 × T and T × U2 must have the same sign. On the other hand, B can be mono-inflective crossing 

its base only if U1 × T and T × U2 have opposite signs. These two cases are presented and discussed below. 
 

Figure 17: Example of non-degenerate convex oblique curve, generating set S = {U1, U2, T } (left) and 

generated curve (right) 

inf 
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 T×U2   U1×T  
+ 

U1 

 
U1,x, U1,y

  
U2 

 
U2,x, U2,y

 
T 

 
Tx, Ty

  

    

    

    

U1×U2 

U1,x U1,y U2,x U2,y 

U1 × T and T × U2 in same sign 

Lemma 5. Given a  set  of non-null  vectors S = {U1, U2, T }  in R2  such that {U1, T } and {U2, T } 
are free. Consider that T ∈ Q1 and U1, U2 ∈ Q1. Assume that U1 × T and T × U2 have the same sign. 

Let α1, α2 ∈ R∗ , P1, P2 ∈ R2 be such that P2 = P1 + T and B = [P1, P1 + α1U1, P2 − α2U2, P2] the curve 
generated by {U1, U2, T }. Suppose that α1 and α2 verify: α1 < and α2 < . Then B is convex 

oblique. 

 

Proof. 

(see Figure 17 for illustration). 

Let us first prove that B is oblique. 

Let = , = and = 

Consider h1 = inf
 

 Tx , 
 Ty 

  
and h2 = inf

 
 Tx , 

 Ty 
 

. 

U1×U2 U1×U2 

Let us prove that  T×U2  ≤ h1 and  U1×T  ≤ h2. 
U1×U2 U1×U2 

Assume that U1 × T < 0 and Then U2 × T > 0 (This implies that U1,y ≠ 0 and U2,x ≠ 0) 
So h1 = 

 Ty  
and h2 =  Tx  . 

U1,y U2,x 

 
 T × U2  

− h 

 

 

=
TxU2,y − TyU2,x 

− 
Ty 

U1 × U2 
1 U1 × U2 U1,y 

= 
TxU2,y − TyU2,x U1,y 

− 
(U1 × U2) U1,y 

Ty  U1,xU2,y − U1,yU2,x 

(U1 × U2) U1,y 

=
U2,y TxU1,y − TyU1,x 

U1,y (U1 × U2) 

= 
U2,y (T × U1) 

U1,y (U1 × U2) 

U1, U2 ∈ Q1 implies that U1,y ≥ 0 and U2,y ≥ 0. 

Moreover, U1,y > 0 since T × U1 > 0. 

We have that T × U1 > 0 and U1 × U2 < 0. 
Thus  T×U2  − h1 ≤ 0 and then  T×U2  ≤ h1. 

U1×U2 U1×U2 

After calculation, in the same way as before, we find that  U1×T  − h2 =  U1,x (U2×T)  
≤ 0. 

Then  U1×T  ≤ h2. 
U1×U2 U2,x (U1×U2) 

According to Lemma 4, for α1 <  T×U2  and α2 <  U1×T  
, B is oblique. 

U1×U2 

 

Now we prove that the curve B is convex. 

U1×U2 

Since U1, U2, and T are in the same quadrant, and U1 × T and T × U2 have the same sign σ, it follows that 

U1 × U2 also has that same sign σ. 
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+ 

    

 
 

 

 
 

  

 

 
 

From 0 < α1 and α1 < (T ×U2 )/(U1×U2 ) we get either α1U1 ×U2 > 0 and T ×U2 − α1U1 ×U2 > 0, or α1U1 ×U2 < 
0 and T × U2 − α1U1 × U2 < 0, depending on σ. 

Either way, it  follows that T × U2 − α1U1 × U2 = (T − α1U1) × U2 also has sign σ. 

Similarly, from 0 < α2 and α2 < (U1×T )/(U1×U2) we conclude that U1 × (T − α2U2) also has sign σ. 

Moreover, since α1 > 0 and α2 > 0, the signs of (T − α1U1) × (α2U2), (α2U1) × (T − α2U2), T × (α2U2) 
and (α1U1) × T are also σ. 

Then B is convex. 

Finally, the curve B is convex oblique. 
 

 

 

 

Figure 18: Example of non-degenerate mono-inflective oblique curve, generating set S = {U1, U2, T } (left) 

and generated curve (right) 
 

 

 

 

U1 × T and T × U2 in opposite sign 

Here, a way to generate mono-inflective oblique curves which cross their bases vectors is given. 

Lemma 6. Given a set of non-null vectors S = {U1, U2, T } in R2 such that the subsets {U1, T } and 

{U2, T } are free (U1 and U2 can be linearly dependent). Consider that T ∈ Q1 and U1, U2 ∈ Q1. Assume 

that U1 × T and T × U2 have opposite signs. Let α1, α2 ∈ R∗ , P1, P2 ∈ R2 be such that P2 = P1 + T and 

B = [P1, P1 + α1U1, P2 − α2U2, P2] the curve generated by {U1, U2, T }. The transformation ΩT designates 
the rectangular inversion of vector T. Suppose that α1 and α2 verify: α1 <   U2×T  

and α2 <   U1×T  
. 

Then B is mono-inflective oblique. 

Proof. 

We have that T ∈ Q1 and U1, U2 ∈ Q1. 

Let ΩT be the rectangular inversion of vector T. 

U1×ΩT (U2) U1×ΩT (U2) 

According to Property 2(3)-(ii), ΩT (U2) ∈ Q1, in addition, U2 × T and T × ΩT (U2) are of the same sign. 

Hence U1 × T and T × ΩT (U2) are of the same sign Notice that T × ΩT (U2) = U2 × T . 

Let α1 <  T×ΩT (U2)  and α2 <   U1×T  
. 

U1×ΩT (U2) U1×ΩT (U2) 

Referring the proof of Lemma 4, α1U1 and α2ΩT (U2) are in RT . Moreover, α1U1 and α2ΩT (U2) are in 

opposite belonging sign to RT . 
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+ 

i=0 i=0 

i=0 

. 

By applying Lemma 3, we get that [P1, P1 + α1U1, P2 − ΩT (α2ΩT (U2)) , P2] is mono-inflective oblique. 

But ΩT (α2ΩT (U2)) = α2U2 

Then [P1, P1 + α1U1, P2 − α2U2, P2] is is mono-inflective oblique. 
 

Now we’ll give a theorem that is a synthesis of the lemmas seen before. Rather, this theorem satisfies 

the conditions of the lemmas we’ve seen and allows us to build oblique curves that are either convex or 

mono-inflective by means of a generating set S = {U1, U2, T }. The proof is obvious from the previous 

results. 
 

Theorem 2. Let S = {U1, U2, T } a set of non-null vectors in R2. Consider that T ∈ Q1 and U1, U2 ∈ Q1. 

Let α1, α2 ∈ R∗ , P1, P2 ∈ R2 be such that P2 = P1 + T and B = [P1, P1 + α1U1, P2 − α2U2, P2] the curve 

generated by S. The transformation ΩT designates the rectangular inversion of vector T. 

• If (U1 × T) (T × U2) > 0 and 
 T×U2  
U1×U2 

 U1×T  
U1×U2 

then B is convex oblique. 

• If (U1 × T) (T × U2) < 0 and 
  U2×T  
U1×ΩT (U2) 
  U1×T  
U1×ΩT (U2) 

then B is mono-inflective oblique. 

 

 

ALGORITHM 

Oblique sequences of points 

We say that a sequence of points P = ((xi, yi))n in R2 is oblique if and only if the sequences (xi)n and 

(yi)n are strictly monotone (see Figure 19). 
 

 

 

. . 

. . 

 
 

 
. 

P2 
. 

P1 
.  P0 

P3 
P4 P3 

P4 

. 

P1 
P2 

. P0 

 

Figure 19: Two oblique sequences of points, convex (left) and non-convex (right). 

 

 

In the context of this work, a point sequence is said to be non-degenerate when it is not possible to find 

three or more consecutive points that are collinear. 

α1 < 

α2 < 

α1 < 

α2 < 
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i=0 

i=0 

i=0 

i=0 

i=0 

i=0 

i=1 

i=0 

2 

( 

We say that an ordered sequence of points of R2 is convex if and only if the polygon with those vertices, 

in that order, is convex (see Figure 19). 

Given an oblique sequence P = (Pi)n in R2, as with BézIER curves, we can talk about the notion of type. 

Referring to Figure 19, the base (or diagonal) of the sequence, i.e. vector T = Pn − P0, and Ti = Pi+1 − Pi 

for i ∈ {0, . . . , n − 1} are all in the same quadrant. So the type of the sequence is that of the quarter-plane 

relative to the quadrant containing the diagonal of the sequence. The sequences in Figure 19 are both of 
Type T1 since the bases are in Q1. 

Interpolation approach 

We continue to carry out the work by considering the quadrant Q1. The results obtained remain the same 

in the other quadrants, with an inversion of direction or sign. 

Let P = (Pi)n be the oblique non-degenerate sequence of control points to be interpolated. We consider 

n + 1 vectors from the sequence V = (Vi)n , and build an interpolating spline consisting of n two- 

dimensional BézIER curves from the sequence B = (Bi)n−1, where each Bi starts at Pi with velocity 

3Vi ends at Pi+1 with velocity 3Vi+1. That is, Bi = [Pi, Pi + Vi, Pi+1 − Vi+1, Pi+1]. Since the arriving and 

departing velocities are the same at each control point, this construction ensures that the spline is C1 

(continuous in position and velocity). 

To carry out the interpolation process for the point sequence P, a sequence D = (Di)n of directions, Di 
is the derivative direction at point Pi, is required. The aforementioned V sequence is defined from the 

sequence D. Note that the vectors of the sequence D (and thus those of V as we shall see) must be in the 
same quadrant as the diagonal vector of the sequence to be interpolated, so that the interpolation keeps the 

obliquity. Three cases concerning the state of D are considered in our interpolation approach: 

 

1. The sequence D = (Di)n is given together with the sequence of points to be interpolated. 

2. The directions D0 and Dn are given and ( Di)n−1 are to be determined. 

3. The entire sequence D = (Di)n is to be determined. 

 
When the directions are not explicitly given, apart the ones on the boundary points, i.e P0 and Pn, the 

directions are calculated as the mean of the vectors around the point Pi for i = 1, . . . , n − 1. 

Note that the vectors ı = (1, 0) and y = (0, 1) form the orthonormal basis of the plane. Recall that 

T = Pn − P0. The procedure is as follows: 

1. Di = Pi+1−Pi−1 , for i ∈ {1, . . . , n − 1} 

2. If D0 is not given then: 

D0 = 
 (P1−P0)+|P1−P0 |· y 

2 
(P1−P0)+|P1−P0 |·ı 

2 

if T × (P1 − P0) > 0 

if T × (P1 − P0) < 0 
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2 

i=0 

i=0 i=0 

i=0 

i=0 i=0 

2 

2 

3. If Dn is not given then: 
 (Pn−Pn−1)+|Pn−Pn−1 |· y 

 
Dn = 

 

 
 

2 if 

T × (Pn − Pn−1) > 0 
 (Pn−Pn−1)+|Pn−Pn−1 |·ı 

if T × (Pn − Pn−1) < 0 

For i in {0, 1 , . . . , n − 1}, let Ti be the base of Bi; that is, Ti = Pi+1 − Pi. Then we set Vi = hiD i, for scale 

factors (hi)n that meet the requirements on Formula (36). The method used to calculate the scale factors 

sequence (hi)n used to build the directions sequence (Vi)n in order to obtain an interpolation of class 

C1 is given prematurely but the construction way and useful proof are accomplished in the sequel. 

Construction and proof of the approach 

The building and presentation of properties and characteristics, as well as the proof of the interpolation 

method, is based mainly on the following theorem. 

Theorem 3. Let P = (Pi)n an oblique non-degenerate sequence of points in R2 where the vector 

Pn − P0 is in the quadrant Q1, DP = (D i)n the sequence of directions and TP = (Ti)n−1; Ti = Pi+1 − Pi, 
the sequence of bases associated to P.  Vectors D0, T0, Tn−1 and Dn are assumed to be in the same 
quadrant Q1. Consider (αi, βi)n−1 a sequence in R∗ × R∗ and B = (Bi)n−1 a sequence of BézhxR curves 

i=0 + + i=0 

where Bi = [Pi, Pi + αi Di, Pi+1 − βi Di+1, Pi+1]. Assume that αi and βi satisfy what follows: 

• If (D i × Ti) (Ti × Di+1) > 0 then 
 Ti ×Di+1  
Di ×Di+1 

 Di×Ti  

Di ×Di+1 

• If (D i × Ti) (Ti × Di+1) < 0 then 
  Di+1×Ti  

Di ×ΩTi (Di+1) 
 Di×Ti  

Di ×ΩTi (Di+1) 

 

Then we have: 

 

1. B is a C0 interpolation of P based on convex and/or mono-inflective BézhxR curves that are all 

oblique. 

2. If P is convex, Di = Pi+1−Pi−1 for i = 1, . . . , n − 1, and D0 × T0, T0 × D1, Dn−1 × Tn−1 and Tn−1 × Dn 0 

have the same sign, then B is a C convex interpolation of P based on oblique convex BézhxR curves. 

Proof. 

When Di = Pi+1−Pi−1 for i = 1, . . . , n − 1, we can easily prove two results: 

1. ∀i ∈ {1, . . . , n − 2}, Di, Ti and Di+1 are in the (same) quadrant Q1. 

αi < 

βi < 

αi < 

βi < 
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i=0 

i=0 i=0 

i=0 

 

 

  

 

 

 

 
 

 

 

 

2. When P is convex, and D0 × T0, T0 × D1, Dn−1 × Tn−1 and Tn−1 × Dn have the same sign, then 

∀i ∈ {1, . . . , n − 2}, we get that Di × Ti and Ti × Di+1 are of the same sign. 

Using these two previous results and applying Theorem 2 for each curve Bi, we prove Theorem 3. 
 

With applying Theorem 3, we obtain just an interpolation of class C0. Indeed, for a point Pi, i = 1, . . . , n − 1, 

the left and right derivatives are collinear but not necessarily equal. An illustration is given on Figure 20. 

To get a C1 interpolation, the results of Theorem 3 are used. Let P = (Pi)n a convex sequence of points 

in R2, DP = (Di)n the sequence of directions and TP = (Ti)n−1 the sequence of bases associated to P. 
Let (αi, βi)n−1 be a sequence in R∗ × R∗ satisfying Theorem 3. 

i=0 + + 
Consider now the sequence (hi)n in R∗ such that : 

i=0 

 

 

+ 

h0 = α0 

hi < inf ( βi−1, αi) ,  i = 1, . . . , n − 1 

hn = βn−1 

 

 

(36) 

Then the sequence of BézIER curves B = (Bi)n−1 where Bi = [Pi, Pi + hiD i, Pi+1 − hi+1Di+1, Pi+1] is an 

interpolation satisfying the constraints of Theorem 3 but of class C1. 

The sequences on Figure 20 are reproduced with a C1 interpolation and presented on Figure 21. 
 

 

 

 

 

 
 

. P0 
 
 

 

 

Figure 20: C0 interpolation of oblique se- 

quences of points, convex (left) non convex 

(right) 

 

. P0 
 
 

 

 

Figure 21: C1 interpolation of oblique se- 

quences of points, convex (left) non convex 

(right) 

 

 

APPLICATION AND EXAMPLES 
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As an application, we developed a LATEX mini-package that we called meMath and a dynamic font in 

PostScript Type 3 supporting parenthesis mathematical symbols taking care of optical scaling. Parentheses 

are implemented on the basis of a set of oblique convex parameterized sequences whose control points are 

joined by interpolating two-dimensional BézIER curves based on our model. We have taken Figure 1 via 

our package meMath on Figure 22. We can clearly see that the convexity and obliquity characteristics of 

the top and bottom halves of the contour curves of the parentheses are preserved in both cases. 

 

y1 

 xi1 y2 

xi2 . 

yn 
 

Figure 22: Parentheses (delimiters) as dynamic 

symbols with meMath 

Figure 23: Justification in Arabic Scripts with 

Kashida 

 

To show how our research work is applied to support the justification of Arabic texts, we consider Figure 

23 which is referenced in [15]. This is a text in Arabic letters taken from an old book. It’s presented in two 

justified columns. Justification is not achieved by inserting blank spaces, as is the case with Latin text, but 

by letting letters undergo curvilinear stretching. This mechanism, in Arabic calligraphic rules, is called 

Kashida. All Framed words in the right column are stretched cases of some Arabic words. The color 

differences in framing mean (for those who don’t read Arabic) that these are different words. The words 

framed in red are used to highlight the concept. The characters H  and N  are two Arabic letters called 

respectively Sad and Dad. They undergo the same rules in writing. They differ only by the top diacritic 

point. Also, their names in Arabic, JBD  (Sad) and  PBD  (Dad), are written in the same way, they respect the 

same rules in stretching and are distinguished only by a top diacritic point. Basically, the red framed word 

in the right column (Sad) is a stretched version of the red framed one in the left (Dad minus the diacritic 

point). We developed, based on our mathematical algorithm, a PostScript mini-font Type 3 “naskh” that 

support stretching of Arabic writing.  JBD  is a stretched state of  JBD  by an amount of 6 diacritic point 

horizontally and a quarter of diacritic point vertically (down) using “naskh” at 14pt size. 

 

CONCLUSIONS AND PERSPECTIVES 

We have developed an approach for interpolating a non-degenerate oblique sequence of points by a 

sequence of cubic BézIER curves, preserving both convexity, inflection and obliquity. The interpolation 

approach is based on oblique convex BézIER curves and oblique mono-inflective cubic BézIER curves 

crossing their bases. 

An intuitive extension of the interpolation method developed in this paper is to provide support for 
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degenerate oblique sequences. Another interesting extension is to improve the method so that we can 

interpolate sequences of points that may or may not be oblique, while still using convex and mono- 

inflective oblique BézIER curves. 

For our purposes and applications, C1 continuity was all we needed. In other areas, geometric continuity 

is of great interest. The method will be extended to take into account geometric continuity. 
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