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ABSTRACT 

The amount of data, particularly in medical imaging, is one of the most important factors in classifying 

the image. Nevertheless, obtaining the datasets is the biggest obstacle in the healthcare industry. In this, 

we prepare a VAE (variational autoencoder) and another model known as the DCGAN (deep 

convolutional generative adversarial networks), on almost 3662 retinal images that have been captured 

from a dataset known as the APTOS- Blindness dataset, to display the images of the synthesized retinal 

fundus. The advantage of this method is that retinal pictures can be produced without the preceding vessel 

segmentation technique. As a result, the system can become autonomous. The models that are acquired 

are the image synthesizers that are adept at synthesizing resized retinal images of any amount from a 

fundamentally regular distribution. Furthermore, more images than this have been used in literature for 

training purposes than for any other endeavor. Giving an output to a CNN model allows for the evaluation 

or appraisal of a synthetic image, and the average squared error between the average 2-Dimensional 

hologram of actual and synthetic images was also calculated. by examining the average loss and latent 

space of the images later. The analysis's successful results suggested that DCGAN, as opposed to 

Variational Auto Encoders, has less loss in general images.        

Keywords: Data Augmentation, DC-GAN, Variational Auto Encoder (VAE), Diabetic Retinopathy, 

Generative Adversarial Networks, CNN. 
 

 



17 International Journal of Current Research and Applied Studies | https://ijcras.com/ •  

International Journal of Current Research and Applied Studies (IJCRAS) 

Vol 2 Issue 5 Sep-Oct 2023  

 

 

 

1. INTRODUCTION 

The general illness known as diabetic retinopathy (DR) is what causes diabetics to lose their eyesight or 

perhaps become blind. Human eye specialists typically identify and categorize this disease's severity 

depending on the kind and wide range of connected lesions. The severity of DR can be classified into 5 stages, 

according to the international consensus [1], [2]: normal, mild, moderate, severe non-proliferative diabetic 

retinopathy (NPDR), and PDR. Hard exudates, soft exudates, hemorrhages, microaneurysms, laser marks, 

proliferating membranes, etc. are some of the related lesions. Even our numerous ophthalmologists find it 

difficult and time-consuming to diagnose diabetic retinopathy, hence automated grading models of DR [3], 

[4], [5], [6] have begun to be taken into consideration during the past few years. Numerous previous studies 

[7], [8], [9], and [10] support deep models, allowing the deployment of DR classification to significantly 

outperform a number of other types of approaches. For several vision tasks, such as visual categorization [11], 

object recognition [12], semantic segmentation [13], [14], and image synthesis [15], deep convolutional neural 

networks (CNNs) have dramatically outperformed manual feature extraction and regular machine learning 

methods. The data distribution of DR over various other grades is exceedingly uneven since atypical images 

of the fundus only make up a small percentage of the data needed to train an effective or powerful deep CNN 

model. For instance, the photos of DR levels 3 and 4 only accounts for 2.35% and 2.16% of the whole DR, 

respectively, in the largest publicly available DR dataset, EyePACS [16], but the images that are typical for 

level 0 account for 73.67%. Accepting this kind of oversized data makes the model less sensitive or responsive 

to many examples with higher DR severity levels, which leads to overfitting. Even while the fundamental 

techniques for data augmentation, including as rotation, random cropping, and flipping, can resolve the 

problem, the model's performance is still constrained by the insufficient diversity of samples at those levels.   

 

 
 

Fig 1: Architecture of GAN 

 

GANs (Generative Adversarial Networks) [17] are widely used for a variety of picture producing jobs. The 

structure of GAN typically consists of a discriminative model D and generative model G competing against 

one another in a min-max game, which has led to a significant advancement in the synthesis of photorealistic 

images. In particular, a neural network is used to generate realistic data, and another is in charge of 

distinguishing between genuine and synthetic data. The deconvolutional layer, which is in charge of scaling 
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up the process to transform low-resolution images into higher-resolution ones, is used by DCGAN to extend 

GAN. By integrating a one-hot vector with the random noise vector, CGAN [18] seeks to define the 

requirements for the generator. On top of that, CycleGAN [19] is used to do unpaired image-to-image 

translation from a source domain to a target domain. Another method for training class-conditional pictures 

and scaling the size of the batch and some model parameters is BigGAN [20], which combines a range of 

excellent current methodologies. One and the other, which are images with great quality and resolution, are 

routinely produced as a result. We were able to construct a retina generator that generates realistic, better 

resolution images because to these well-developed taught GAN frameworks.  

 

The development of retinal fundus image synthesizers is the primary topic of this paper. In contrast to earlier 

studies, this unique approach utilised more images throughout the training phase and did not require vessel 

masks. Using images from the APTOS Blindness dataset, we trained the Deep Convolutional Generative 

Adversarial Networks (DCGAN) [7] and the Variational Autoencoder (VAE) [6]. Then, using these models, 

we created artificial retinal samples that we ultimately evaluated using the loss function.  

 

2. RELATED WORK 

 

A. GANs in the Synthesis of Medical Image:  

The absence of extensive and varied annotated databases could be overcome by synthesizing medical images 

using GANs. Numerous strategies have been put forth for a number of medical imaging domains, including 

computed tomography (CT) [22], [23], [24], magnetic resonance imaging (MRI) [25], [26], [27], & chest X-

rays [28]. For instance, CT imaging's radiation exposure raises the danger of cancer. A series of 3D fully 

convolutional networks were used to illustrate the synthesis of CT images from MRI data in [22]. A 

reconstruction according to the pixels, loss, and an image gradient loss were selected for producing as well as 

adversarial learning. Mahapatra et al. used conditional GAN and Bayesian neural networks for the synthesis. 

 

B. GANs in Synthesis of Retinal Image:  

Recently, some researchers have also used GANs to produce retinal fundus images. The first U-Net 

framework was proposed by Costa et al. [31] for the transfer of vessel segmentation masks to fundus images 

using a standard GAN architecture. However, the examples that have been made have block flaws and lack 

manageable grading information. Tub-SGAN [32] was proposed in order to expand the style transfer to the 

generator and so broaden the diversity of synthesized samples. Although this is largely prospering and 

displaying a positive outcome, it is impossible to manufacture the DR-associated lesions and specifics of the 

physiological retina. Recently, Niu et al. [33] tried to create pictures of the fundus using pathological 

descriptors and vascular segmentation. 

 

The retina's unhealthily generated images have been discussed by a number of other academics and 

researchers. A GAN-based method is suggested by Pujitha and Sivaswamy for the creation of images 

containing hemorrhages. For the model training phase of this technique, a vascular tree and lesion binary 

annotations are required. By giving the model the vascular tree and lesion (hemorrhage) masks, a fresh image 

of the retina can be produced. Despite this, the results were deemed unsatisfactory since the reproduction of 
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retinal pictures was deemed to be insufficient. These technologies have significant drawbacks despite 

producing images of the retina that are generally reasonable. They require training data with pixel-level 

annotations, for instance, but they are exceedingly expensive to get. Additionally, the model's capacity for 

creation is determined by the training set variability. Additionally, the high computational requirements 

frequently compromise the qualities of the created images, particularly by providing low resolution images 

that are insufficient for retinography, which has greater resolutions. Similarly, as was already indicated, these 

activities frequently rely on the retinal vasculature for both the creation of the image and the evaluation of its 

plausibility. However, the produced images do not depict vascular networks that have been given medical 

approval. Additionally, as far as we can tell, it has not yet been possible to create medical images using a 

certain DR grade and a specific type of lesion. The most recent studies suggested that it was possible to create 

images with varying numbers of hemorrhages, but the ability to do so wasn't further investigated.  

 

With lesion information and arbitrary grading, a DR-produced generative adversarial network (DR-GAN) 

[34] can produce fundus images with great quality. On the lesion and construction masks, the retina generator 

is condition. Additionally, to control the generated grading intensity, adaptive grading vectors that are 

modeled from latent grading spaces can be used. 

 

The effectiveness of multitask learning in relation to the issues with regression. In materials science, one ionic 

conductivity dataset and seven benchmark datasets are used in the research. According to the conclusions 

drawn from the trials, multi-task learning leads to an improvement in performance when generalizing 

examples of linear regression with multiple variables. 

 

The creation of retinal pictures without the need for vessel segmentation is made possible by the use of 

DCGAN [35]. Therefore, the new method completely undermines its reliability. The collected models or 

instances have the capacity to synthesize trimmed retinal pictures of any amount from a regular normal 

distribution. In addition, more photos were used in the training process than with any previous persistent 

model. 

 

Another technique for creating retinal images uses a system that has been trained on vascular networks and 

the comparable retinal fundus images. In other words, a transition between the retinal fundus and the vascular 

trees has been discovered. The main flaw in their strategy is how well-reliable an autonomous algorithm is at 

separating. 

 

C. Variational Auto Encoders for image synthesis: 

The VAE framework was first introduced by Kingma and Welling [36] in 2014, and it has since been hailed 

as one of the greatest contributions to generative modeling or representation learning in general. The VAE 

method provided a cutting-edge method for integrating deep learning with probabilistic models. The main 

distinction between VAEs and traditional autoencoders is that they learn latent variables through repeated 

divisions, which has proven to be a very useful trait when using generative modeling functions. A distribution 

rather than the individual numbers could be returned thanks to the cleverly designed VAE encoding. To put 

it more plainly, the encoder creates a pair of vectors, one of means () and the other of standard deviations (). 
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As a result, instead of studying a deterministic mapping like typical autoencoders do, the VAE seeks to learn 

the divisions of latent variables based on the mean values and their variations. Based on the samples of and 

values, it is hypothesized that the latent dimensional space exists, and Figure 2 depicts the general structure 

of the VAE framework. We advise reading Kingma and Welling's tutorial [37] for a comprehensive 

description of the VAE approach, even if it is outside the purview of this work. 

 
Fig.2 Architecture of Variational Auto Encoder 

 

The VAE technique has gradually gained acceptance across a range of generative modeling challenges since 

its inception. For instance, text creation using an RNN-based VAE architecture was implemented. Similar to 

this, a recent study [38] produced a blended or hybrid architecture of recurrent neural networks (RNN) and 

convolutional neural networks (CNN) for the purpose of text production, while other research papers 

[39,40,41] investigated the potential of VAE for the development of natural images. It is also important to 

note that the generative adversarial network (GAN) [42] is another well-known generative modeling 

technique, however the current study is not primarily concerned with it. 

 

3. PROPOSED VAE AND DCGAN METHODS 

A. Variational Auto Encoders: 

1.1. It consists of two neural networks: the encoder network, also known as the approximate inference 

network, is in charge of mapping a training sample to the latent or hidden space, while the decoder network 

plans or maps from the latent space to an artificial sample. In this challenge, the encoder and decoder are 

fully connected neural networks with one hidden layer each, and the latent space is an isotropic 

multivariate Gaussian that is centered. During the learning phase, sometimes referred to as the training 

phase, the encoder extracts the latent variables z from the input data, and the decoder eliminates those 

types of variables to produce a sample. Then, during the generation stage, VAE extracts samples from the 

latent space. The framework of VAE can be depicted from the Figure 2(a) 
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Fig.2. Architecture of Variational Auto Encoder 

 

B. Deep Convolutional Generative Adversarial Networks: 

The deep neural net framework known as GANs, or GANs, is made up of two nets. The opposing party is 

referred to as the discriminator, and the former is known as the generator. a CNN grade also referred to as 

Deep Convolutional Generative Adversarial Networks (DCGAN) that is based on a specific tactic. This 

framework, which generates images of increased or enhanced quality and more stability during the training 

phase, is the primary improvement over the very first GAN. We implemented and trained the generator & 

discriminator on the cropped retinal pictures using the generator cost functions & the original discriminator, 

as per the directions provided in the study publication by Radford et al. Similar to the VAE technique, 

DCGAN-based artificial picture generation [35] primarily consists of two phases: one is the learning phase 

and the other is the generating phase. In the first stage, the discriminator works to distinguish between the 

images acquired from the generator and the training set images while the generator essentially picks out 

samples from an N-dimension regular distribution that rush through the generator to acquire a fake sample. 

Figure 4(b)'s depiction of the DGCAN framework or architecture is another option. 

 

 
Fig.3. a) Schema of VAE architecture 

 

 



22 International Journal of Current Research and Applied Studies | https://ijcras.com/ •  

International Journal of Current Research and Applied Studies (IJCRAS) 

Vol 2 Issue 5 Sep-Oct 2023  

 

 

Fig.3b) Schema of DCGAN architecture 

 

A few improvements over the current GANs are made in the framework. One of the changes includes the use 

of Batch normalization in each generator and discriminator, the complete replacement of completely 

associated or linked hidden layers with the mean pooling in the end, and the use of Leaky Re LU stimulation 

in the engine or the generator for all of the complete layers excluding the output and the u. It is no surprise 

that the research has effectively improved adversarial models, but the most difficult challenge is really model 

training. In order to find a solution to this problem, we have followed the advice given in [35] to gain stability 

when training the DCGAN. Examples include normalizing the input images between -1 and -1, using the 

ADAM optimizer for the engine or generator with a Gaussian distribution for the mini batches, which are 

made up of the original images used to train the models and the latent space, and more.  

 

4. RESULTS AND DISCUSSIONS 

A. DATASET:  

3662 photos total from the APTOS Blindness. The training of the models used in this work was done 

using the testing photos, which were almost 1928 in number, and the train images, which were almost 

3662 in number. The organizers of the Kaggle competition divided the over 18590 fundus photos in the 

whole dataset into roughly 3662 training, 1928 validation, and nearly 13000 testing images. 

An open-source NVIDIA Titan Xp GPU and Keras were used in this task's deep learning library to conduct 

all the necessary experiments. 

 

B. Loss Functions [9]: 

    We are aware that the DCGAN model imitates a contest in which the generator tries to create distinctive or 

organic visuals. The DCGAN model's primary objective is to trick the discriminator by producing more 

realistic images while simultaneously increasing the discriminator's misclassification error. This can also be 

described as a two-player minimax game here: 

 

 

 

where G(z) is the output of the generator after an actual noise has been applied to z, D(G(z)) is the 

discriminator's judgment of the likelihood that a take instance is genuine, and D(x) is the discriminator's 

estimate of the likelihood that the actual data instance x is real. Ex is the expected value for all occurrences 

of the actual data. a generator's predicted value (Ez) for each random input. As a result, the configuration is 

basically qualified to maximize log(D(x) and minimize log (1 - D(G(z))). 

 

Now, basically, the training of the VAE and DCGAN architectures using only the rescaled and pre-processed 

retinal pictures from the APTOS Blindness dataset. Testing of a range of N-dimensional latent spaces from 

roughly 32 to 100 latent variables for each image size. each latent factor. To regulate all the systems that don't 

remember the training database, every latent space was looked at. In the meantime, it produces believable 

retinal images. Estimation of intermediate latent representation points is carried out to achieve this. We 

performed numerous tests to train the VAE model and came to the conclusion that using a 512-dimension 
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latent space and 1008 * 1008 spatial resolution produced the best results. We obtained the artificial images 

shown in Figure 4 by running for roughly fifty epochs with a small batch size of 64. 

 
Fig.4a) 

 
Fig.4b) 

 
Fig.4c) 

 
Fig. 4d) 

    Fig.4. Samples of images produced using the VAE architecture: a). Produced images for each epoch with 

mean and loss. B) & c). plotting the sample and predicted images. D) plotting the generated images in a grid. 

 

 
Fig.5: Examples of synthetic images generated by the DCGAN architecture 

 

Although the synthetic images obtained using VAE have a texture similar to realistic photos, they lack the 

typical characteristics of a fundus image and are fuzzy and high loss. We were able to determine, with the use 

of the DCGAN architecture, that realistic images were produced with an image size of 128128 pixels, a 
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modest batch size of 64, and 32 epochs. In Fig. 5, examples of these are presented. Basically, the clarity of 

these synthetic images compared to those produced using the VAE technique is the main benefit of employing 

this architecture. We can calculate the loss for both the generator and the discriminator pictures in order to 

confirm them. When compared to the DCGAN, VAE has incurred more loss. As a result, the estimation or 

evaluation of the images produced only by the DCGAN was kept going. The obtained results are shown in 

Table 1 and in the figure as well. 

TABLE I.   

S.No 

Discriminator and generator loss of 

DCGAN at random epochs 

 

Epoch 
Discriminato

r Loss 

Generator 

Loss 

1 1 3.09 0.58 

2 5 0.80 0.81 

3 10 0.74 0.75 

4 15 0.728 0.726 

5 20 0.72 0.77 

6 25 0.70 0.71 

7 30 0.68 0.77 

8 32 0.68 0.77 
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Fig.6. losses of discriminator and generator for random epochs represented in Table I. 

 

C. Observations:  

The random epochs' Discriminator and Generator losses were tabulated. Regardless of how well the image 

sample was generated, the genuine sample label is marked as 1 and the generator sample label is recorded as 

0. D(x) should therefore be close to 1, and D(G(z) should be close to 0. In our experiment, we only save the 

photographs when D(G(z)>=0.76, or nearly 1, in the image. 

 

D. Evaluation of DCGAN & VAE:  

Frechet Inception Distance (FID) can be used to analyze the images produced by GAN and auto encoders. 

Compared to Inception Score (IS), FID assesses image similarity to actual images more precisely. The 

Inception Score (IS) measures the quality of the images based on how effectively the top-performing image 

classification system InceptionV3 recognizes a set of synthetic photos as one of 1000 recognized things. For 

each synthetic image, the scores consider the confidence in the conditional class predictions as well as the 

integral of the marginal probability of the predicted classes (diversity). How phony images compare to real 

ones is not considered by the conceptualization Score. The FID score was developed with the intention of 

evaluating synthetic images utilizing information from a collection of pictures. 
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Fig.7 FID scores of DC-GAN generated images. 

 

 

 
Fig.8 FID scores of VAE generated images. 

 

Based on the FID scores of both DCGAN & VAE generated images, DCGAN generated images have low 

values and VAE generated images values are very high. So, for retina images DCGAN showing the better 

results than VAE. 

 

5. CONCLUSIONS 

The retinal pictures from the APTOS Blindness 2019 dataset were used to train the two generative proposed 

models in this paper, which are based on the VAE and DCGAN frameworks. On the other hand, whereas the 

prior methods have been used to train the system using vessel masks, the suggested models illustrated here 

do not require vessel masks in order to produce the images. Additionally, by using DCGAN, retinal pictures 

that were cropped without losing quality were obtained. Conclusions following evaluation have clearly 

demonstrated that this method is a workable option and the correct strategy for developing a model capable 

of producing annotated images of the retina. 
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