

International Journal of Current Research and Applied Studies, (IJCRAS)

ISSN: 2583-6781

available at https://ijcras.com/

Volume 2 Issue 2 March-April 2023

Page 14-31

IDENTIFICATION OF CHEMICAL COMPOUNDS, ANTIMICROBIAL AND ANTIOXIDANT EFFECTS OF EXTRACTS FROM SEEDS, STEMS AND ROOTS OF SYMBOPOGON SCHOENANTHUS

Ali.A. Eltayeib and Nahla Agab

Department of Chemistry, Faculty of Science, Kordofan University, Sudan.

ABSTRACT

The aim of this study was to identify chemical composition, antimicrobial and antioxidant activity of extracts of stems and roots (mixture 1:1) and seeds from mahareb plant. The seeds, stems and roots were collected from alshareef allged (north kordofan state), during March (2018), dried under shade, grinded and then extracted by maceration method using 99% methanol, petroleum ether and distilled water. Photochemical screening revealed the presence of flavonoids, terpenoids, saponins and tannins with high concentration except alkaloids with low concentration in extracts. Crude extracts and tetracycline with different concentrations (40, 60, 70 and 90 mg/ml) were applied against four bacterial strains (two Gram positive: Sterbeto cocai (S.c), Staphylococcus aureus (ATCC 25923); and two Gram negative: Escherichia Coli (E.c)(ATCC 25922), Pseudomonas aerruginosa (P.s.a) (ATCC 27853) and with 100 mg/ml against one type of fungus (candida albicans (ATCC 7596) using agar plate well-diffusion method. According to this method the inhibition zone less than 14 resistance, 14 to 18 medium and larger than 18 mm sensitive. Methanol seeds extract at 90mg/ml showed activity against P.s.a (22mm) and E.c (17mm). Methanol roots and stems extracts at 70mg/ml showed activity against P.s.a (17mm). Tetracycline at 90 and 60mg/ml showed activity against (E.c 20mm, S.c 16mm) and (E.c 16mm) respectively. The extracts showed no activity against candida albicans. The free radical scavenging activity of the crude extracts was evaluated using 2,2 -Di (4-tert-octylphenyl)-1-picryl hydrazyl stable free radical (DPPH). The extracts showed a DPPH scavenging activity of 16±0.08, 85±0.00, 46±0.08 (for seeds extracted by water, methanol and petroleum ether respectively) and 10 ± 0.07 , 56 ± 0.08 , 4 ± 0.07 (for stems and roots mixture extracted by water, methanol and petroleum ether respectively). The standard propyl gallate showed 95±0.02 scavenging activity. Analysis of the crude extracts by GC-MS showed 56, 52, 5, 9, 54, 38 compounds for seeds, stems and roots extracted by methanol, water and petroleum ether respectively.

Keywords: Symbopogon schoenanthus, stems, roots, chemical compounds.

1. INTRODUCTION

Plants, which have one or more of its parts having substance that can be used for treatment of diseases, are called medicinal plants (Sofowora, 1982). Medicines derived from plants are widely famous due to their safety, easy availability and low cost (Iwu et al, 1999). Herbal medicines may include whole parts of plant or mostly prepared from leaves, roots, bark, seeds and flowers of plants. They are administered orally, inhaled or directly applied in the skin (Westh et al., 2004). Medicinal herbs are more significant to the health of individual and community. The medicinal value of these plants lies in bioactive phytochemical constituent that produce definite physiological action on the human body (Hill, 1952). Some of the most important bioactive phytochemical constituents are alkaloids, essential oils, flavonoids, tannins, terpenoids, saponins, phenolic compounds and many more (Solecki 1975). There is up to 80 percent of people still on herbal remedies for their health care (Farnsworth et al., 1985). Sudan is a rich country with indigenous herbal resources. This is due to the variation in climate, rainfall and soils.

It is estimated that Sudan encompasses more than 3156 species belonging to 1137 genera and 170 families (Broun and massay, 1929, Elamin, 1990). Therefore, there are large numbers of medicinal plants in Sudan used traditionally against different diseases. In spite of recent domination of synthetic chemistry as a method to discover and produce drugs, the potential of bioactive plants or their extracts to provide new and novel products for disease treatment and prevention is still enormous (Raskin et al., 2002). Compared with chemical synthesis, plant derived natural products represent an attractive source of biologically active agents since they are natural and available species (Ghosh et al., 2008). Plants synthesize many compounds called primary metabolites that are critical to existence. Development countries are still using medicinal plant for their health care (Kim, 2005). Nowadays, plants countries to be the major source of medicine in rural region of developing countries (Chitme et al., 2003).

Traditional medicine has wide acceptability and along history. Indeed, majority of the people use these medications at one time or another and this presupposes the efficacy and safety of plant materials used in ethno medicines. It could not be ascertained when and how the practitioners first introduced remedy or prescription (Igoli et al., 2003). Ethno medical studies are today, recognized as the most viable methods of identifying new medicinal plants or refocusing on those earlier reported for bioactive constituents. Traditional medicine is concerned with the study of medical systems from the native's point of view. Native categories and explanatory models of illness, including an etiology, symptoms, courses of sickness, and treatments are investigated. Most of the Sudanese people in rural areas rely on traditional medicine for the treatment of many infectious diseases (Elkamli and Elkhalifa, 1997). Traditional medicine has maintained its popularity in all regions of the developing world and its use is rapidly spreading in the industrialized countries. In china for example, traditional herbal preparations account for 30% - 50% of

total medicinal consumption. In Ghana, Mali, Nigeria, and Zambia, the fires line of treatment for 60% of children with high fever resulting from malaria is the use of herbal medicine at home (Bannerman et al., 1993). Ethno medical studies are today, recognized as the most viable methods of identifying new medicinal plants or refocusing on those earlier reported for bioactive constituents. Early studies on indigenous medical systems were mostly limited in focus on witchcraft and illness caused by super-natural forces, and on specialists such as folk healers, and shamans (Fabrega and Silver, 1973).

MATERIALS AND METHODS

Plant material:

The roots, seeds and stems of *cymbopogon schonenanthus rufescens* were collected in April 2018, from plant field in Alshreef Aljad about 10 Km from Oum Kradium (North Kordofan State). The plant was authenticated by Herbarium National Center for Medicinal Research and Aromatic plants Institute. The plant materials were shade-dried, cleaned and grinded by a mechanical grinder. Equal amounts of stems and roots were mixed as one sample. The grounded samples were stored at room temperature to be ready for further extraction.

Methods:

Preparation of crude extracts:

Hundred grams of each of the dried powder (seeds and the mixture of stems and roots) were macerated exhaustively for three days at room temperature with1000 ml of methanol and petroleum ether and for four hours with 1000 ml of water. The extracts were filtered and the obtained products were weighed prior to further analysis.

Phytochemical screening of the crude extracts:

The dried extracts were reconstituted in methanol, pettroleum ether and water and then subjected to qualitative tests for the presence of phytochemical compounds in the different extracts according to methods described by Harborne (1998).

Blood agar base

The blood agar base is prepared by dissolving 40g of media in 1 liter

distilled water, boiled to dissolve completely, sterilized at 121 ° C and 15-165 atmospheric pressure for 15 minutes, cooled to 50 ° C, aseptically 10% fresh blood was added, mix with gentle rotation and poured in the petri dish plates. The four types of isolated bacteria are cultured by using loop and benzene lamp, incubated for 24 hours at 37 ° C. Holes of known diameter (8mm) were made for each of the surface of the grown colonies of bacteria. In each plate four holes were made with another one at the center as control filled with distilled water. Alternate holes are filled with the extracts (90, 70, 60, 40mg/ml) and allowed to diffuse at room temperature for two hours then incubated at 37 ° C for 18 hours. It is noticed that the color of the extract of each holes is spread. Using verna the diameter of inhibition zone was calculated as follows: inhibition zone diameter (mm) = the diameter of extract – the diameter of the hole (8mm) (Forbes et al., 1990).

Preparation of fungus suspension

The fungal cultures were maintained on sabouraud dextrose agar, incubated at 25 ° C for 4 days. The fungal growth was harvested and washed with sterile normal saline and finally suspension in 100ml of sterile normal saline, and the suspension were stored in the refrigerator until used.

Bacterial microorganisms

Sterbeto Cocai NCTC8235 (Gram +ve bacteria) Staphylococcus aureus ATCC25923 (Gram +ve bacteria) Escherichia Coli ATCC25922 (Gram -ve bacteria) Pseudomonas aeruiginosa ATCC27853 (Gram -ve bacteria) National Collection of Type Culture (NTCC), Colindale, England. American Type Collection (ATCC) Rockville, Maryland, USA.

Fungus microorganism

Candida albicans ATCC7596

Gas chromatography-mass spectrometry (GC-MS) conditions:

The qualitative analysis of the sample was carried out by using GC-MS technique model (GC-MS-QP2010-Ultra) from Japanese Simadzu Company, with serial number 020525101565SA and capillary column (Rtx-5ms-30m×0.25 mm×0.25µm). The sample was injected by using split mode, helium as the carrier gas passed with flow rate 1.69 ml/min, the temperature program was started from 50oC with rate 7oC /min to 180oC then the rate was changed to 10oC/min reaching 300oC as final temperature degree with 2 minutes as hold time , the injection port temperature was 300oC , the ion source temperature was 200oC and the interface temperature was 250oC. The sample was analyzed by using scan mode in the range of 40-600m/z mass to charge ratio and the total run time was 28 minutes. Identification of components for the sample was achieved by comparing their retention times and mass fragmentation patents with those available in the library, the National Institute of Standards and Technology (NIST). DPPH radical scavenging assay:

The DPPH radical scavenging was determined according to the method of Shimada et al., (1992) with some modifications. In 96-wells plate, 0.5mg from each sample was allowed to react with 2.2 Di (4-tert-octylphenyl)-1-picryl hydrazyl stable free radical (DPPH) for half an hour at 37oC. The concentration of DPPH was kept as 300μ M.The test samples were dissolved in dimethyl sulfoxide (DMSO) while DPPH was prepared in ethanol. After incubation, decrease in absorbance was measured at 517 nm using multiplate reader spectrophotometer. Percentage radical scavenging activity by sample was determined in comparison with a DMSO treated as control group. All tests and analysis were run in triplicate.

RESULTS AND DISCUSSION

Depending on their polarity solvents will extract varying quantities of components from the plant material,

for this reason solvents of different polarities were used.

Some of the physical properties and yields of *cymbopogon schoenanthus* extracts were shown in table 1. All the solvents produced the same yield except the seeds with petroleum ether produced higher yield. An increase in the extracted material in seeds by petroleum ether could be related to high content of non polar compounds in this part of the plant.

Solvent	Color	Consistency	Yield (gm)
P.ether(seed)	Greenish	Liquid	2.6
P.ether (roots, stems)	Greenish	Liquid	1.7
Water(seed)	Brownish	Solid	1.6
Water(roots, stems)	Brownish	Solid	1.6
Methanol(seed)	Yellowish	Liquid	1.6
Methanol(roots,stems)	Yellowish	Liquid	1.6

Table 1: Physical properties of cymbopogon schoenanthus extracts

P. ether: petroleum ether

Phytochemical screening

The results of the phytochemical screening of the extracts were shown in tables (2) and (3). Results showed high concentration of terpenoids for both seeds and the mixture of stems and roots (Methanol, petroleum ether and water extracts) but low concentrations of flavonoids and saponins for seeds and stems, roots mixture. Tannins and alkaloids not detected in the methanol and water extracts.

Table 2: Phytochemical screening of the seed's extracts

Component	Methanol	Petroleum ether	Water extract
Alkaloids	-	-	-
Saponins	+	+	+++
Flavonoids	+	-	-
Tannins	-	-	-
Terpenoids	+++	+++	+++

+++: High concentration, +: Low concentration, -: Not detected

Table 3: Phytochemical screening of the stems and roots mixture

Component	Methanol	P.ether	Water extract
Alkaloids	-	-	-
Saponins	+	+	+
Flavonoids	+++	+	+
Tannins	+++	-	-
Terpenoids	+++	+++	+++

Assessment of antimicrobial activity of the extracts and tetracycline:

Assessment of antibacterial activity of *cymbopogon schoenanthus* extracts and tetracycline with different concentrations (40, 60, 70, 90 mg/ml) were carried out against four types of bacteria, two gram positive (Sterbeto cocai and staphylococcus) and two gram negative (Escherichia coli and Pseudomonas). The extracts also examined against one fungus (*Candida albicans*) with 100 mg/ml. The assessment of antimicrobial activity of the extracts and tetracycline were shown in tables (4),(5) and (6).

The extract of seeds extracted by methanol at 90mg/ml exhibited activity against pseudomonas aeruginosa (22mm) and Escherichia Coli (17mm). The methanol extract of roots and stems at 70mg/ml showed activity against pseudomonas aeruginosa (17mm). Other concentrations of the extracts showed no activity against the tested bacteria also the extracts showed no activity against the tested fungus (Candida albicans). Tetracycline at 90mg/ml exhibited activity against Escherichia Coli (20mm) and Sterbeto cocai (16mm), at 60mg/ml showed activity against Escherichia Coli (16mm). Other concentrations of tetracycline showed no activity towards the tested bacteria.

Plant material	Solvent	Concentration	P.s.a	E.c	S.a	S.c
		mg/ml				
Seeds	P. ether	90	9	7	7	10
~	Methanol	90	22	17	12	9
~	Water	90	13	9	8	13
Roots, stems	P. ether	90	10	9	7	10
~	Methanol	90	7	7	5	8
~	Water	90	9	8	9	7
Seeds	P. ether	70	5	6	3	5
~	Methanol	70	9	7	8	8
~	Water	70	12	11	10	6
Roots, stems	P. ether	70	8	10	9	11
~	Methanol	70	17	12	13	11
~	Water	70	7	9	8	8
Seeds	P. ether	60	3	5	6	6
~	Methanol	60	10	8	9	11
~	Water	60	9	6	6	5
Roots, stems	P. ether	60	4	2	3	5
~	Methanol	60	5	3	6	4
~	Water	60	4	7	8	8
Seeds	P. ether	40	2	3	5	3
~	Methanol	40	6	4	5	6
~	Water	40	8	6	5	3

Table 4: Antibacterial activity of extracts against four types of bacteria (inhibition zone in mm)

E.c = *Escherichia coli*, P.s.a = *Pseudomonas aeruginosa* S.a = *Staphylococcus aureus*, S.c = *Sterbeto cocai*, C.a= *Candida albicans*

According to the method used for antimicrobial assessment the inhibition zone less than 14 resistance, 14 to 18 medium and larger than 18 mm sensitive.

Table 5: Antibacterial activity of tetracycline against four types of bacteria (inhibitition zone in mm)

Concentration	P.s.a	E.c	S.a	S.c
mg/ml				
90	14	20	9	16
70	10	14	7	11
60	12	16	8	13
40	11	13	6	12

Table 6: Antifungal activity of extracts against candida albican (inhibitition zone in mm)

Plant material	Solvent	Concentration	C.a
		mg/ml	
Seeds	P.ether	100	-
~	Methanol	100	-
~	Water	100	-
Roots, stems	P.ether	100	-
~	Methanol	100	-
~	Water	100	-

Chemicals compounds of different extracts

The chemical compounds identified in the different crude extracts from the stems, roots and seeds were shown in figures from (4) to (9) and tables (7) to (12) below. The chemical compounds with their retention time, peak area and area % were shown in the tables.

International Journal of Current Research and Applied Studies Vol 2 Issue 2 March-April 2023

Figure 4: Gas chromatogram of the chemical compounds of seeds extracted by petroleum ether

10/20					
	Peaks	R.Time		Peak B	eport TIC
-	1	3.081	Area 101211	Area%	Pastanoic acid, 4-methyl-, methyl ester
-	2	3.446	181232	0.05	Hexanoic acid, methyl ester
-	- 3	4.361	369255	0.10	Heptanoic acid, methyl ester
-		6.157	570986	0.16	Octanoic acid, methyl ester
1	6	7,184	316765	0.09	Methyl 6-methyloctanoate
	7	8.143	165532	0.05	Nonanoic acid, methyl ester
	8	8,239	406401	0.11	Geraniol
	9	9.074	145894	0.10	Decanoic acid, methyl ester
-	10	10.070	171583	0.05	Cyclohexane, 1-ethenyl-1-methyl-2,4-bis(
-	11	10.169	1333585	0.37	alphaBulnesene
-	12	11.343	425412	0.12	Naphthalene, 1,2,4a,5,6,8a-hexahydro-4,7
-	13	11.452	530997	0.15	.betaylangene
-	15	11.474	909544	0.25	2-Isopropenyl-4a,8-dimethyl-1,2,3,4,4a,5,0
	16	11.539	523007	0.14	Alloaromadendrene
	17	11.790	4255386	1.18	alpha,-acorenol
	18	11.862	1045544	0.45	Benzene, 1-methyl-4-(1,2,2-trimethyleyele
	19	11.902	1313814	0.52	Jana-Copaene
	20	11.952	\$304643	0.34	Humulanc-1,0-dien-5-01
-	21	12.026	3834516	1.06	4813 Cyclotetradecatriene-1.3-diol. 1.5.9
-	22	12.095	1799249	0.50	Longifolene
-	23	12.339	36986044	10.22	Cyclohexanemethanol, 4-ethenyl-,alpha
-	24	12.697	4725891	1.31	1-Hydroxy-1.7-dimethyl-4-isopropyl-2.7-6
-	25	13.410	10823288	2.99	8-eni-gama-eudesmol
-	26	13.468	6138674	1.70	5-Azulenemethanol, 1,2,3,4,5,6,7,8-octahy
-	27	13.525	5686033	1.57	alphaCadinol
-	18	13.730	55153965	15.24	2-Naphthalenemethanol, 1,2,3,4,4a,5,6,7-
-	.9	13.857	65380439	18.07	1-Naphthalenol, decahydro-1,4a-dimethyl
	0	13.971	2491931	0.69	1,4-Methanoazulen-9-ol, decahydro-1,5,5,
-		14.175	1232500	0.34	Tricyclo[20.8.0.0(7,16)]triacontane, 1(22),
3	-	14.233	1249044	0.35	Mothyl tetradecanoate
3	3	14.300	17142810	4.74	2,6,10-Dodecatrien-1-ol, 3,7,11-trimethyl-
	-	14.091	2998676	0.83	9,10-Dimethyltricyclo[4.2.1.1(2,5)]decane
3	2	15.141	2433976	0.67	2-Naphthalenemethanol, 2,3,4,4a,5,6,7,8-c
		15.458	2819305	0.78	Caryophyllene oxide
3		15.613	25387828	7.02	2-Methyl-5-(2,6,6-trimethyl-cyclohex-1-et
30	-	15.732	2205039	0.61	7R,8R-8-Hydroxy-4-isopropylidene-7-me
35		16.013	25/9016	0.71	Cubenol
40	-	10.220	5992431	1.66	Methyl dihydroisosteviol
41	-	16,452	15725255	4.35	Hexadecanoic acid, methyl ester
42	-	16.879	917222	0.25	n-Hexadecanoic acid
43	-	17.198	535151	0.15	Hexadecanoic acid, 14-methyl-, methyl as
- 44		17.479	442926	0.12	Hexadecanoic acid, 15-methyl, methyl as
45		18.207	18741554	5.18	9,12-Octadecadienoic acid (Z Z), mothed
46	1	18.254	22519934	6.22	9-Octadecenoic acid (Z), mathed acting
47	-	18.468	5482152	1.51	Methyl stearate
48		19.189	1181393	0.33	trans-Geranylogranial
49	3	20.317	2934866	0.81	Eicosanoic acid mathe
50	1	21.740	567460	0.16	Decanol 2 hand
51	1. 3	22.020	1415310	0.30	December 2-nexyl-
52		23.599	1535433	0.42	Docosanoic acid, methyl ester
53		24 151	1000138	0.42	retracosanoic acid, methyl ester
107			5099145	0.80	gammaSitosterol

Table 7: Chemical compounds of petroleum ether extract from the seeds

1/2

Figure 5: Gas chromatogram of the chemical compounds of the stems and roots extracted by petroleum ether

Peak#	R.Time	Area	Area%	Name
1	3.438	711840	0.52	Hexanoic acid methyl actor
2	4.355	138746	0.10	Pentanoic acid, A mathed
3	6.150	636865	0.47	Octanoic acid, methyl ester
4	8.232	2344205	1.71	2-Cycloheyen-Long 3 methyl 6 (1 meth
5	9.069	1164348	0.85	Decanoic acid, methyl actor
6	9.304	234048	0.17	2-Cyclohexen-1-one 2-methyl 5 (1 methy
7	9.386	119870	0.09	1.3.6-Hentatriene 2.5.5 trimathal
8	10.169	1939290	1.42	Cycloheyane, Lethenyl, L.methyl 2.4 bis
9	10.623	509841	0.37	Bicyclo17 2 0lundec 4 ann 4 11 11 trimet
10	10.804	156176	0.11	1H-Cyclopropalalnanhthalana 1a 2 3 5
11	11.445	256883	0.19	heta vlangene
12	11.643	274196	0.20	alpha -Cuaione
13	11.783	1683386	1.23	Undecanoic acid 10 mathat mathat
14	11.952	6121708	4 48	6 oni shyohungi
15	12.023	3138110	2 20	4 8 13 Cyclotetradesetalene 1 2 Not 4 5
16	12.330	27547052	20.14	4,6,15-Cyclotetradecatriene-1,5-diol, 1,5,
17	12.694	602279	0.44	L Hydroxy 17 dimethanol, 4-ethenyl-alpha.,
18	12.747	464986	0.14	1-Hydroxy-1,7-dimethyl-4-isopropyl-2,7-d
19	12.829	707324	0.52	Carvonhullana oxida
20	13.063	1879017	1.37	2-Nanhthalanamathanal 12244
21	13.396	2932256	2.14	gama andermol
22	13.452	4500280	3.29	Agarospirol
23	13.672	15469346	11.31	2-Nanhthalanamathanal da ta ta
24	13.790	3333420	2.44	1-Naphthalenel deschool decahydroalph
25	14.227	3232952	2.36	Methyl tetradecanoata
26	14.949	248048	0.18	Tridecanois acid mathed
27	15.045	338529	0.25	Tridecanoic acid, metnyl ester
28	15.363	498330	0.36	Pentadecanoic acid, 12-methyl-, methyl ester
29	15.583	4376677	3.20	(2.2.6-Trimethal bismle fifthere
30	16.221	1150139	0.84	(-)-Spathulanol
31	16.452	13837040	10.12	Hexadecanoic sold mothed
32	16.871	469022	0.34	n-Heyadecanoic acid, methyl ester
33	18.204	13138805	9.61	9 12-Octodecadionalis
34	18.254	16232084	11.87	9-Octadecencia acid (Z,Z)-, methyl e
35	18.467	4350436	3.18	Methyl steamate
36	20.316	680930	0.50	Ficosanole asid much l
37	22.020	868819	0.64	Decosanoic acid, methyl ester
38	23.598	471679	0.34	Tetracosanole acid, methyl ester
		136758962	100.00	retracosation acid, methyl ester

Table 8: Chemical compounds of petroleum ether extract from the stems and roots

Figure 6: Gas chromatogram of the chemical compounds of the seeds extracted by water

Table	9:	Chemical	compounds	of	the	seeds	extracted	bv	water
Labie	· •	ononnoai	compounds	~		beeab	entri accea	$\sim J$	

Decht	75 (M)		Peak R	eport TIC
r cak#	R.Time	Area	Area%	Name
1	18.134	276105	8 00	3.0 Dimethalta to the
2	18.467	305744	9.96	3,9-Dimethyltricyclo[4.2.1.1(2,5)]decan-9-
3	19.025	263051	7.63	In-Cycloprop[e]azulen-4-ol, decahydro-1
4	19.659	1017802	20.50	9-Undecenal, 2,10-dimethyl-
5	20.595	1597962	29.50	9,10-Dimethyltricyclo[4.2.1.1(2,5)]decane-
		158/803	46.02	Globulol
		3450655	100.00	

Figure 7: Gas chromatogram of the chemical compounds of the stems and roots extracted by water

Table 10: Chemical compounds of the stems and roots extracted by water

Ann			Peak R	eport TIC
Peak#	R.Time	Area	Area%	Name
1	6.476	203037	1.01	1-Hexanol, 2-ethyl-
2	6.758	2702245	13.47	Pantolactone
3	12.086	55223	0.28	2-Oxa-spirol4 5ldec-8-ene-1 7-dione 4.6
4	12.328	179600	0.90	2-Methoxy-4-vinvinhenol
5	14.506	1118492	5.58	2-Cyclohexen-1-one 4-bydroxy-3-methyl
6	22.345	7526639	37.52	n-Hexadecanoic acid
7	24.150	864195	4.31	9.12-Octadecadienoic acid (7.7)
8	24.188	3226706	16.09	9-Octadecenoic acid (E)-
9	24.397	4183378	20.85	Octadecanoic acid
		20059515	100.00	

Figraphy.

Figure 8: Gas chromatogram of the chemical compounds of the stems and roots extracted by methanol

Table 1	11:	Chemical	compounds	of the stems a	and roots	extracted 1	by methanol

eak#	R.Time	Area	Area%	Name	
1	4.960	1474309	0.64	2.5-Furandione 3-methyl	
2	6.493	317080	0.14	(1R)-2.6.6-Trimethylbicyclo[3.1.1]hont 2 -	
3	6.761	1924801	0.83	Pantolactone	
4	7.808	758727	0.33	Phenol. 2-methoxy-	
5	8.392	652238	0.28	2-Cyclohexen-1-ol, 1-methyl-4-(1-methylet	
6	8.764	439202	0.19	Eucalyptol	
7	8.971	420157	0.18	4H-Pyran-4-one, 2,3-dihydro-3,5-dihydrox	
8	9.345	215330	0.09	2-(2-Benzyloxy-4-methyl-cyclohex-3-envi)	
9	9.826	1319906	0.57	.alphaTerpineol	
10	10.159	391952	0.17	2-Cyclohexen-1-ol, 3-methyl-6-(1-methylet	
11	10.647	7269041	3.15	Benzofuran, 2,3-dihydro-	
12	11.115	24832768	10.77	2-Cyclohexen-1-one, 3-methyl-6-(1-methyl	
13	11.932	436858	0.19	Thymol	
14	12.088	787156	0.34	2-Oxabicyclo[2.2.2]octan-6-one, 1.3.3-trim	
15	12.306	2434638	1.06	2-Methoxy-4-vinvlphenol	
16	13.698	2468652	1.07	Cyclohexane, 1-ethenyl-1-methyl-2,4-bis(1	
17	14.256	1396987	0.61	Carvophyllene	
18	14.496	1049309	0.45	Cedrene	
19	14.730	297944	0.13	Carvophyllene oxide	
20	15.476	1412147	0.61	Bicyclo15.3.01decane, 2-methylene-5-(1-me	
21	15.626	1474321	0.64	.alphaGuaiene	
22	16.064	7146471	3.10	6-eni-shyobunol	
23	16.154	4464856	1.94	4.8.13-Cyclotetradecatriene-1.3-diol. 1.5.9	
24	16.584	28356170	12.29	Cyclohexanemethanol, 4-ethenyl- alpha, a	
25	17.100	1344899	0.58	1H-Cyclopropielazulen-7-ol. decabydro-1.	
26	17.188	1433512	0.62	11.11-Dimethyl-spirol2.9ldodeca-3.7-dien	
27	17.546	3668917	1.59	2-Nanhthalenemethanol, 1,2,3,4,4a,5,6,8a-	
28	17.987	13418089	5.82	2-Naphthalenemethanol, 1,2,3,4,4a,5,6,7-o	
29	18.055	7353677	3.19	Agarospirol	
30	18.118	1393903	0.60	Hinesol	
31	18.183	2253202	0.98	Guaiol	
32	18.341	23376235	10.13	2-Naphthalenemethanol, decahydro- alphi	
33	18.382	17917800	7.77	.gamaeudesmol	
34	18,480	5727971	2.48	1-Naphthalenol, decahydro-1.4a-dimethyl	
35	18,977	5524655	2.40	Illudol	
36	19.136	1697748	0.74	(18.2F.48.5R.7F.11F)-Cembra-2.7.11-trie	
37	19.264	853041	0.37	2.6.10-Dodecatrien-1-ol. 3.7.11-trimethyl	
38	20,189	938645	0.41	2-Naphthalenemethanol 2344a5678	
30	20.701	5205748	2.26	1-Heptatriacotanol	
40	20.746	7701983	3.34	Ledol	
41	20.917	2214222	0.96	6-Isonronenyl-4.8a-dimethyl 1 2 3 5 6 7 9	
42	21 222	3246021	1.41	Longifolenaldehyde	
43	21.466	8302241	1.41	2.(49 8-Dimethyl, 1 2 3 4 49 5 6 7 actabul	
45	21.400	1179906	0.60	2-(4a,8-Dimethyl-1,2,3,4,4a,5,6,7-octahydr	
44	21.002	4302345	1.00	Trievelold 4.0.0(2.7))des 9 ans 2 methons	
43	21.094	4392343	0.61	Dibydro isosteviol wethod enter	
40	21.800	120512	0.51	Citoxiannin	
4/	22.120	1385154	0.60	Gitoxigenin	
48	22.346	7476914	3.24	n-Hexadecanoic acid	
49	24.139	2802263	1.21	9,12-Octadecadienoic acid (Z,Z)-	
50	24.185	4116346	1.78	9-Octadecenoic acid, (E)-	
51	24.379	1266889	0.55	Octadecanoic acid	
52	26.756	1268057	0.55	4-tert-Butoxystyrene	

Figure 9: Gas chromatogram of the chemical compounds of the seeds extracted by methanol

Peak#	R.Time	Area	Area 9/	Name
1	4.957	1407136	Area 70	Name
2	9.829	618649	0.45	2,5-Furandione, 3-methyl-
3	10.631	13514426	2.45	Reprofusion 2.3 dilustre
4	11.103	13058633	2 36	2 Cueleberra 1
5	11.935	518189	0.09	Thymol
6	12.094	538349	0.10	2-Ovabiovala(2.2.2) actors (
7	12.307	5061374	0.92	2-Methory 4 visulational
8	12.882	528834	0.10	alpha Cubabana
9	13.025	1014879	0.18	Phenol 7 6 dimethory
10	13.413	678038	0.12	Consene
11	13,701	3654248	0.66	Cyclohevano 1 othensel 1 method 2 4 kin
12	14.259	946335	0.17	Carvonhyllene
13	15,409	3270473	0.59	2. Isomeonamil de 8 dimethet 122 d de
14	15.481	1836379	0.33	Biovelols 3 Oldesone 2 methodes 5 (2)
15	15.583	4402335	0.80	Naphthalana 12286280
16	15.625	2996927	0.00	Naphthalene, 1,2,3,5,6,7,8,8a-octahydro-
17	15.945	5077227	0.04	211-3,9a-Methano-1-benzoxepin, octahyd
18	15.997	2416660	0.92	.gammaMuurolene
19	16.075	13147483	1 20	Selina-o-en-4-ol
20	16.161	5877.439	1.06	Cubenol
21	16.261	3184567	1.00	o-epi-shyobunol
22	16.611	40345301	0.58	cubedol
23	17.004	2215102	8.93	Cyclohexanemethanol, 4-ethenylalpha.
24	17,109	1765431	0.42	1H-Cycloprop[e]azulen-4-ol, decahydro-
25	17 564	1703421	0.32	IH-Cycloprop[e]azulen-7-ol, decahydro-
26	18 016	13555054	2.45	2-Naphthalenemethanol, 1,2,3,4,4a,5,6,8
27	18 099	15020022	4.96	2-Naphthalenemethanol, 1,2,3,4,4a,5,6,7-
28	18 200	10070823	2.73	Agarospirol
20	19.455	19938843	3.61	.alpha,-Cadinol
30	19.403	01198049	11.08	2-Naphthalenemethanol, decahydroalp
31	10.402	2401001	0.43	1-Naphthalenemethanol, 1,2,3,5,6,7,8,8a-
33	10.374	035/5592	15.13	1-Naphthalenol, decahydro-1,4a-dimeth
22	18,900	212/830	0.39	(-)-Spathulenol
33	18.999	8401661	1.52	Illudol
34	19.150	5185306	0.94	(1S,2E,4S,5R,7E,11E)-Cembra-2,7,11-tri
35	19.273	8288572	1.50	2,6,10-Dodecatrien-1-ol, 3,7,11-trimethy
30	19.669	5778012	1.05	9,10-Dimethyltricyclo[4.2.1.1(2,5)]decan
37	20.202	7929878	1.44	2-Naphthalenemethanol, 2,3,4,4a,5,6,7,8
38	20.609	6873815	1.24	Kauran-18-al, 17-(acetyloxy)-, (4.beta.)-
39	20.723	13902197	2.52	(2,2,6-Trimethyl-bicyclo[4,1,0]hept-1-y[)
40	20.806	36516262	6.61	Ledol
41	20.862	4600410	0.83	6-Isopropenyl-4.8a-dimethyl-1.2.3.5.6.7
42	20.934	4995395	0.90	7R.8R-8-Hydroxy-4-isopropylidene-7-m
43	21.239	7199013	1.30	Longifolenaldehyde
44	21.484	15748736	2.85	2-(4a.8-Dimethyl-1 2 3 4 4a 5 6 7 octobe
45	21.712	8638209	1.56	5-Azulenemethanol 1233a 4567
46	21.814	3005175	0.54	4-IsopropenyL4 7 dimethal 1
47	22.125	5125840	0.93	Gitoxigenin
48	22.356	16917034	3.06	n-Hevederanois astd
49	24,155	13326687	2.41	9 12 Ostadasa disast
50	24,201	3245216	0.50	9. Octodecadienoic acid (Z,Z)-
51	24.384	3640617	0.59	Octadecenoic acid, (E)-
52	25.425	1702072	0.00	Octadecanoic acid
53	26.176	1115901	0.31	Aceuc acid, [(Z,Z)-3,7,11-trimethyl-2,6,1
54	26 491	2462202	0.20	Elcosanoic acid
	a0.471	2402282	0.45	Propanoic acid, 2,2-dimethyl-, I(E,E)-3."

Table 12: Chemical compounds of the seeds extracted by methanol

1/2

Peak#	R.Time	Area	Area%	Name
55	26.754	3689247	0.67	4-tert-Butoxystyrene
56	27.080	1760157	0.32	2,6,10-Dodecatrien-1-ol, 3,7,11-trimethyl-,
	CHICK DESIGN OF THE	552504637	100.00	

Antioxidant activity

The results of antioxidant for the extracts of seeds, roots and stems were shown in table 13. The seed extracts by methanol showed the highest antioxidant activity as compared to the rest of extracts. The water extracts showed the lowest antioxidant activity as compared to other solvents extracts.

Table 13: Radical scavenging activity of the different crude extracts the seeds, stems and roots samples by DPPH method

Plant material	Solvent	%of activity ±SD
Seeds	Water	16 ± 0.08
	Methanol	85 ± 0.00
	Petroleum ether	46 ± 0.08
Stem and roots	Water	10±0.07
	Methanol	56±0.08
	Petroleum ether	4±0.07
Standard Propyl Gallate		95±0.02

SD: standard deviation

 $\label{eq:percentage} \mbox{Percentage of activity} = 100 - \frac{\mbox{absorption of the sample}}{\mbox{absorption of the blank}} \times 100$

CONCLUSION

The results do not show which compound is responsible for the antimicrobial and antioxidant activity; hence, the whole plant could be of use as a source of antioxidant and antimicrobial. Mainly methanol extracts can be use as antioxidant and antimicrobial.

REFERENCES

Bannerman, R. H.; Burton, J. and Cheien, W. (1993). Traditional medicine and health care converge. World Health Organization, Genera, Switzerland.

Broun, A. F. and Massay, R. E. (1929). Flora of the Sudan.Wellington house, London.

Chitme, H.; Chandra, R. and Kaushik, S. (2003). Studies on anti diarhheacl activity of calotropies Gigantea

R. Br. In experimental, Animals. Journal of pharmacy and pharmaceutical sciences (7): pp. 70-75.

Elamin, H. M. (1990). Trees and shrumbs of the Sudan. Ithaca press, exeter.

Elkamali, H. M. and Elkhalifa, K. F. (1997). Treatment of malaria through herbal drugs in the central Sudan. Fitoterapia 68, pp. 527 – 528.

Fabrega, H. and Silver D. (1973). Illness and shamanistic curing in zinacantan an ethnomedical analysis.University press, standford.

Farnsworth, N. R.; akerele, O.; Bingel, A.s.; Soejarto, D.D. and Guo, Z. Bull. WHO.(1985) 63, pp. 965-972.

Forbes, B.A.; Saham, D.F.; Wiessfied, A.S. and Trevino, E.A. (1990). Methods for testing

antimicrobial effectiveness In: Bailey and Scotts Diagnostic Microbiology Ed. Baron E.J., Peterson L.R. and fine gold S. m. Mosby Co. St Louis, Missouri.

Ghosh, A; Das, B; Roy, A; M\andal, B. and Chandra, G. (2008). Anti-bacterial activity of some medicinal plant extracts. Journal of natural medicines, 62, pp. 259 – 262.

Harborne, J. B. (1998). Phytochemical methods. Halsted press. New York.

HILL AF. (1952). Economic Botary a text book of useful plants and plants products 2nd ed McGraw-Hill Book Company Inc New York.

Igoli, J. O; I. C. Igwue and N. P. Igoli (2003). Traditional medicinal practices amongst the igode people of Nigeria, J. herbs spices and medicinal plants, 10 (4), pp. 1-10.

Iwu MM,Duncan AR and Okunji CO. (1999). New antimicrobials of plant origin. In: Janick J. ed. Prospective on new crops and new uses. ASHS press, Alexandria, V.A.pp.457-462.

Kim, H. (2005). Do not put too much value on conventional medicines. Journal of ethnoharmacolgy, 37, 39, 100.

Raskin,I.:Ribnicky,D.:Komarnytsky,S.:Ilic,N.:Poulev,A.:Borisiuk,N.,

Brinker, A.: Moreno, A.: Ripoll, C.: Yakoby, N.: cornwell, T.: Pastor, I. and Fridlender B. (2002). Plant and the human health in the twenty-firest century, trends in Biotechnology, 20(12), pp.522-531.

Shimada k, Fujikawa k, Yahara k, and Nakamura T. (1992). Antioxidative properties of xanthan on the antioxidation of soybean oil in cyclodextrin emulsion. Agric Food Chem.: 40: pp. 945-8.

Sofowora A. (1982). Medicinal Plants and Traditional in Afirica. John Willy, New York, pp. 289-290.

Solecki, R.S., (1975). Shanidar IV: a Neanderthal flower burial in northern Iraq. Science 190, 880-81.

Westh H, Zinn CS, Rosdahl VT. (2004). An international multicenter study of antimicrobial consumption and resistance in Staphylococcus aurous isolated from 15 hospitals in 14 countries. Microbe Drug Resist. (10) pp.169-176