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ABSTRACT 

This paper presents a method for solving fuzzy large-scale multi-objective integer linear fractional 

programming problems. First, fuzzy large-scale multi-objective integer linear fractional programming 

problems are transformed into a crisp model, using various kinds of linear ranking functions. Then, the 

fractional functions are transformed into linear functions, using linearization technique. Second, the 

linearization model is solved to obtain an efficient solution for proposed problems. A numerical example 

is given to illustrate efficiency of the proposed method. 

Keywords: Multiobjective linear programming; Integer programming; Decomposition algorithm; 

Fractional programming; Fuzzy set theory; Linear ranking function.     
 

 

 

1. INTRODUCTION 

The concept of fuzzy decision making was brought into programming research by Zimmerman [22] under 

the term fuzzy linear programming (FLP), and it has since been used in a variety of problem types [1, 10, 

14-17]. Toksari [20] presented a method based on a a Taylor series for solving fuzzy multiple objective 

linear fractional programming problems. Dheyab [4] used the ranking functions to covert fractional linear 

programming problems in a fuzzy environment into a crisp model. Nehi and HajMohamadi [13] presented 

a method based on ranking function to solve fuzzy multi-objective linear programming problem. An 

improved method based on the branch and cut concept for solving multiobjective integer linear fractional 

programming problem was introduced by Mehdi et al. [12]. Bharati et al. [3] introduced a class of distance 

functions between two trapezoidal fuzzy numbers and used it to solve a fully fuzzy multiple objective 

linear programming (FFMOLP) problem. A fuzzy compromise solution for FFMOLP problems was 
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developed by Hamadameen and Hassan [8]. Arana-Jimenez [2] presented a new method that was based 

on multiple objective linear programming (MOLP) to find a non-dominated solution to FFLP problems.  

 

This paper is organized into five sections. In the next section, definitions of various kinds of linear ranking 

functions are reviewed. In Section 3, large-scale multi-objective integer linear fractional programming 

problems with fuzzy numbers in the constraints and with block angular structure (FLSMLFP) are 

formulated, and a detailed methodology is given to solve this type of problem.  A illustrative numerical 

example for the proposed method is presented in Section 4. Finally, this paper is concluded in Section 5. 

  

2. LINEAR RANKING FUNCTIONS 

An efficient approach for ordering fuzzy numbers is to define a ranking function 𝐷: 𝐹(ℜ) → ℜ which is 

a mapping of the set of fuzzy numbers on a real line, where a natural order exists. Suppose that 𝑎̃ and 𝑏̃ 

be two trapezoidal fuzzy numbers in 𝐹(ℜ), then the orders on 𝐹(ℜ) are defined, as follows: 

𝑎̃ ≥ 𝑏̃ if and only if 𝐷(𝑎̃) ≥ 𝐷(𝑏̃), 

𝑎̃ ≤ 𝑏̃ if and only if 𝐷(𝑎̃) ≤ 𝐷(𝑏̃), 

𝑎̃ = 𝑏̃ if and only if 𝐷(𝑎̃) = 𝐷(𝑏̃). 

 

In this work, we use the linear ranking functions adopted by Maleki [11] and Yager [21] as follows: 

 

2.1. Maleki Ranking Function [11] 

The ranking function of a fuzzy number 𝑎̃ = (𝑎𝑙, 𝑎𝑢, 𝛼, 𝛽)  is defined as follows: 

 

𝐷(𝑎̃) = 𝑎𝑙 + 𝑎𝑢 +
1

2
(𝛽 − 𝛼 )                                          (1) 

 

2.2. Yager Ranking Function [21] 

    The ranking function of a fuzzy number 𝑎̃ = (𝑎𝑙, 𝑎𝑢, 𝛼, 𝛽) is defined as follows: 

𝐷(𝑎̃) =
1

2
[𝑎𝑙 + 𝑎𝑢 −

4

5
𝛼 +

2

3
𝛽]                                       (2) 

 

3. METHODOLOGY  

3.1. Formulation of Fuzzy Large–Scale Multi-objective Integer Linear Fractional Programming 

Problem 

 

Let us consider the following FLSMLFP problems: 

 

FLSMLFP:𝑚𝑎𝑥𝐹(𝑥) = {𝑓1(𝑥), 𝑓2(𝑥),… , 𝑓𝑘(𝑥)},                                         (3.a) 

                                          subject to 

 ∑ 𝑎0𝑗𝑥𝑗
𝑛
𝑗=1 ≤ 𝑏̃0,                                                                        (3. 𝑏) 



28 International Journal of Current Research and Applied Studies | https://ijcras.com/ •  

International Journal of Current Research and Applied Studies 

Vol 1 Issue 3 July-August 2022  

 

 

 ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≤ 𝑏̃𝑖 (𝑖 = 1,2, … ,𝑚)                                            (3. 𝑐) 

𝑥𝑗 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 = 1,2, … , 𝑛.                  (3. 𝑑) 

 

where 𝑥 ∈ 𝑅𝑛 is a vector of decision variables, 𝑏̃ = (𝑏̃0, 𝑏̃1, … , 𝑏̃𝑚) is an (𝑚 + 1) fuzzy vector, 𝑎0𝑗 and 

𝑎𝑖𝑗 (𝑖 = 1,2, … ,𝑚; 𝑗 = 1,2, … , 𝑛) are constants. 

 

The ith linear fractional objective function takes the form: 

 

𝑓𝑖(𝑥) =
∑ 𝑐𝑖𝑗𝑥𝑗 + 𝜆𝑖
𝑛
𝑗=1

∑ 𝑑𝑖𝑗𝑥𝑗 + 𝛾𝑖
𝑛
𝑗=1

 (𝑖 = 1,2, … , 𝑘)                                   (4) 

 

3.2. Crisp Model of FLSMLFP Problems 

The basic idea in treating FLSMLFP problems is to define a crisp model equivalent to the proposed 

problem. The idea of employing deterministic version will be illustrated by using two ranking functions, 

Maleki [11] and Yager [21].  

 

3.2.1. Using Maleki Ranking Function [11] 

 

 ∑ 𝑎0𝑗𝑥𝑗
𝑛
𝑗=1 ≤ [𝑏0

𝑙 + 𝑏0
𝑢 +

1

2
(𝛽0 − 𝛼0)],                                          (5. 𝑎) 

 ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≤ [𝑏𝑖

𝑙 + 𝑏𝑖
𝑢 +

1

2
(𝛽𝑖 − 𝛼𝑖)],                                             (5. 𝑏) 

where 𝑏̃0 = (𝑏0
𝑙 , 𝑏0

𝑢, 𝛼0, 𝛽0)  and 𝑏̃𝑖 = (𝑏𝑖
𝑙 , 𝑏𝑖

𝑢, 𝛼𝑖, 𝛽𝑖)  (𝑖 = 1,2, … ,𝑚) are trapezoidal fuzzy numbers. 

 

3.2.2. Using Yager Ranking Function [21] 

 

 ∑ 𝑎0𝑗𝑥𝑗
𝑛
𝑗=1 ≤

1

2
[𝑏0
𝑙 + 𝑏0

𝑢 −
4

5
 𝛼0 +

2

3
𝛽0],                                        (6. 𝑎) 

 ∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≤

1

2
[𝑏𝑖
𝑙 + 𝑏𝑖

𝑢 −
4

5
 𝛼𝑖 +

2

3
𝛽𝑖] , (𝑖 = 1,2, … ,𝑚)             (6. 𝑏) 

 

Now, the crisp large–scale multiobjective integer linear fractional programming (LSMLFP) problems 

equivalent to FLSMLFP problems can be written, as follows: 

 

LSMLFP:𝑚𝑎𝑥𝑓𝑖(𝑥) =
∑ 𝑐𝑖𝑗𝑥𝑗 + 𝜆𝑖
𝑛
𝑗=1

∑ 𝑑𝑖𝑗𝑥𝑗 + 𝛾𝑖
𝑛
𝑗=1

 (𝑖 = 1,2, … , 𝑘),                      (7. 𝑎) 

                                                 subject to 

𝑥 ∈ 𝑆𝑀 =

{
 

 

𝑥 ∈ 𝑅𝑛||

∑ 𝑎0𝑗𝑥𝑗
𝑛
𝑗=1 ≤ [𝑏0

𝑙 + 𝑏0
𝑢 +

1

2
(𝛽0 − 𝛼0)] ,

∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≤ [𝑏𝑖

𝑙 + 𝑏𝑖
𝑢 +

1

2
(𝛽𝑖 − 𝛼𝑖)],   

          𝑥𝑗 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗. }
 

 

             (7.b) 
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or 

𝑥 ∈ 𝑆𝑌 =

{
 

 

𝑥 ∈ 𝑅𝑛||

∑ 𝑎0𝑗𝑥𝑗
𝑛
𝑗=1 ≤

1

2
[𝑏0
𝑙 + 𝑏0

𝑢 −
4

5
 𝛼0 +

2

3
𝛽0] ,

∑ 𝑎𝑖𝑗𝑥𝑗
𝑛
𝑗=1 ≤

1

2
[𝑏𝑖
𝑙 + 𝑏𝑖

𝑢 −
4

5
 𝛼𝑖 +

2

3
𝛽𝑖],   

          𝑥𝑗 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗. }
 

 

             (7.c) 

  

Definition 3.1. Let 𝑆̃ be the set of all crisp feasible solution of FLSMLFP problems. Then 𝑥∗ ∈ 𝑆̃ is said 

to be an efficient optimal solution for FLSMLFP problems if there does not exist another 𝑥𝑗 ∈ 𝑆̃ 

 (𝑗 = 1,2, … , 𝑛) such that 𝐹(𝑥) > 𝐹(𝑥∗) and 𝐹(𝑥) ≠ 𝐹(𝑥∗). 

 

3.2. Linearization Model of LSMLFP Problems 

Here, the fractional linear function from each objective is converted to a linear polynomial using the 1st 

order Taylor series [18]. The transformation of the objective functions 𝑓𝑖(𝑥), (𝑖 = 1,2, … , 𝑘) to polynomial 

functions is given in the following form: 

 

 𝑓𝑖(𝑥) ≅ 𝑓𝑖(𝑥𝑖
∗) + ∑ (𝑥𝑗 − 𝑥𝑖𝑗

∗ )𝑛
𝑗=1

𝜕𝑓𝑖(𝑥𝑖
∗)

𝜕𝑥𝑗
(𝑖 = 1,2, … , 𝑘)                    (8) 

 

where 𝑥𝑖
∗ = (𝑥𝑖1

∗ , 𝑥𝑖2
∗ , … , 𝑥𝑖𝑛

∗ ) is the value that is used to maximize the ith objective function 

𝑓𝑖(𝑥) (𝑖 = 1,2, … , 𝑘) and n is a number of variables. 

 

Then, using the nonnegative weighted sum approach [9], LSMLFP problems can be transformed into 

large-scale integer linear programming problems with single objective function (LSLP) as follows: 

 

 LSLP:𝑚𝑎𝑥 ∑ 𝑤𝑖
𝑘
𝑖=1 (𝑓𝑖(𝑥𝑖

∗) + ∑ (𝑥𝑗 − 𝑥𝑖𝑗
∗ )𝑛

𝑗=1
𝜕𝑓𝑖(𝑥𝑖

∗)

𝜕𝑥𝑗
),                    (9) 

                                        subject to 

                                                          𝑥 ∈ 𝑆𝑀 𝑜𝑟 𝑥 ∈ 𝑆𝑌                                                            

where 𝑤𝑖 ≥ 0 (𝑖 = 1,2, … , 𝑘) and ∑ 𝑤𝑖
𝑘
𝑖=1 = 1. 

 

3.4. Decomposition Algorithm for LSLP Problems 

Using the decomposition algorithm [5, 19], LSLP problems are broken into n-sub problems that can be 

solved independently. Assuming that each of the convex set of (5.b), or (6.b), is bounded, then every point 

in this set can be expressed as a convex combination of the extreme points i.e., 

 

𝑥𝑗 = ∑ 𝛽𝑗
𝑘𝑘𝑗

𝑘=1 𝑥̂𝑗
𝑘 , (𝑗 = 1,2, … , 𝑛)                         (10.a) 

𝛽𝑗
𝑘 ≥ 0 and ∑ 𝛽𝑗

𝑘𝑘𝑗
𝑘=1 = 1 for all j.                         (10.b) 

 

where 𝑘𝑗 is a number of extreme points of set j and 𝑥̂𝑗
𝑘 (𝑘 = 1,… , 𝑘𝑗) are the extreme points of the jth set. 
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Ignoring integer conditions reduce LSLP problems to modified problem in terms of 𝛽𝑗
𝑘, as follows: 

 

 𝑃̂(𝑥):𝑚𝑎𝑥 ∑ 𝐶̂𝑗 (∑ 𝛽𝑗
𝑘𝑘𝑗

𝑘=1 𝑥̂𝑗
𝑘)𝑛

𝑗=1 ,                                               (11. 𝑎) 

                                        subject to 

𝑥 ∈ 𝑆̂𝑀 =

{
 
 

 
 ∑ 𝑎𝑖𝑗𝛽𝑗

𝑘𝑘𝑗
𝑘=1 𝑥̂𝑗

𝑘 ≤ [𝑏𝑖
𝑙 + 𝑏𝑖

𝑢 +
1

2
(𝛽𝑖 − 𝛼𝑖)] (𝑖 = 1,2, … ,𝑚)

∑ 𝛽𝑗
𝑘𝑘𝑗

𝑘=1 = 1,                                                     (𝑗 = 1,2, … , 𝑛)

𝛽𝑗
𝑘 ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 𝑎𝑛𝑑 𝑘                                           

        (11. 𝑏)  

or 

  𝑥 ∈ 𝑆̂𝑌 =

{
 
 

 
 ∑ 𝑎𝑖𝑗𝛽𝑗

𝑘𝑘𝑗
𝑘=1 𝑥̂𝑗

𝑘 ≤
1

2
[𝑏𝑖
𝑙 + 𝑏𝑖

𝑢 −
4

5
 𝛼𝑖 +

2

3
𝛽𝑖] , (𝑖 = 1,2, … ,𝑚)

∑ 𝛽𝑗
𝑘𝑘𝑗

𝑘=1 = 1,                                                     (𝑗 = 1,2, … , 𝑛)

𝛽𝑗
𝑘 ≥ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 𝑎𝑛𝑑 𝑘                                           

     (11. 𝑐)  

     

such that 

 ∑ 𝑤𝑖
𝑘
𝑖=1 (𝑓𝑖(𝑥𝑖

∗) + ∑ (𝑥𝑗 − 𝑥𝑖𝑗
∗ )𝑛

𝑗=1
𝜕𝑓𝑖(𝑥𝑖

∗)

𝜕𝑥𝑗
) = ∑ 𝑤𝑖

𝑘
𝑖=1 (∑ 𝑐𝑗

𝑖𝑛
𝑗=1 𝑥𝑗) = ∑ 𝐶̂𝑗

𝑛
𝑗=1 (∑ 𝛽𝑗

𝑘𝑘𝑗
𝑘=1 𝑥̂𝑗

𝑘) 

 

Note that 𝛽𝑗
𝑘 are the decision variables of the modified problem and the optimal solution of the original 

problem can be obtained from the relation: 

 

 𝑥𝑗
∗ = ∑ 𝛽𝑗

𝑘𝑘𝑗
𝑘=1 𝑥̂𝑗

𝑘, (𝑗 = 1,2, … , 𝑛)                                                    (12) 

 

Finally, using the branch-and-bound method [7] to find the integer solution. 

 

To test a point 𝑥∗ to be efficient to FLSMLFP problems, using the following efficiency test and theorem 

(Chankong and Haimes (1983), [6]. 

 

Efficiency Test 

To test a point 𝑥̅  belongs to the feasible domain (3.b)-(3.d) to be efficient to problems (3.a)-(3.b), select 

𝑤̅ ∈ 𝑅𝑘, 𝑤̅𝑖 > 0 𝑖 ∈ {1,2, … , 𝑘}, and solve the following problem: 

 𝑃(Ψ) = 𝑚𝑎𝑥Ψ = ∑ 𝑤̅𝑖
𝑘
𝑖=1 𝑠𝑖                                                                          (13) 

                                    subject to 

                                                   𝑥 ∈ 𝑆𝑀  (𝑜𝑟   𝑥 ∈ 𝑆𝑌)  

                                           𝑓𝑖(𝑥)𝑠𝑖 = 𝑓𝑖(𝑥̅)𝑠𝑖 ≥ 0, 𝑖 ∈ {1,2, … , 𝑘} 

Where  𝑓𝑖(𝑥)  is the ith objective function in problems (3.a)-(3.b). 
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Theorem 1. For given 𝑤̅ ∈ 𝑅𝑘, 𝑤̅ > 0 and 𝑥̅ in the feasible domain (3.b)-(3.d), let Ψ∗ be an optimum 

value of the problem (13) then: 

i. 𝑥̅ is an efficient solution to problems (3.a)-(3.b), if Ψ∗ = 0. 

ii. The optimal solution of problem (13) is an efficient solution to problems (3.a)-(3.b), if 0 < Ψ∗ <

∞.  

 

4. Numerical Example 

The following example demonstrates the computational procedure for an FLSMLFP problem: 

FLSMLFP:𝑚𝑎𝑥𝐹(𝑥) = {𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), 𝑓4(𝑥), 𝑓5(𝑥), 𝑓6(𝑥)}, 

                                       subject to 

                                                     𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≤ (15, 25, 10, 10), 

                                                   5𝑥1 + 𝑥2 ≤ (4, 8, 2, 2), 

                                                     𝑥3 + 𝑥4 ≥ (2, 3, 1, 1), 

                                                     𝑥3 + 5𝑥4 ≥ (20, 30, 15, 15), 

                                         𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟.                              

where  

𝑓1(𝑥) =
𝑥1+𝑥2+𝑥3+𝑥4

4𝑥1+3𝑥2+𝑥3+𝑥4+3
,  𝑓2(𝑥) =

𝑥1+2𝑥2−𝑥3+𝑥4

4𝑥1+3𝑥1+𝑥3+𝑥4+3
,  𝑓3(𝑥) = 𝑥1 − 𝑥2 − 𝑥3 + 𝑥4   

𝑓4(𝑥) =
2𝑥1−𝑥2+𝑥3−𝑥4

4𝑥1+3𝑥2+𝑥3+𝑥4+3
,  𝑓5(𝑥) =

𝑥1+2𝑥2+𝑥3−𝑥4

4𝑥1+3𝑥1+𝑥3+𝑥4+3
,  𝑓6(𝑥) =

𝑥1+𝑥2−𝑥3−𝑥4

4𝑥1+3𝑥1+𝑥3+𝑥4+3
            

 

I. Using Maleki ranking function [11] 

 

Using Maleki ranking function [11], the equivalent crisp model of FLSMLFP is written, as follows: 

 

LSMLFP: 𝑚𝑎𝑥𝐹(𝑥) = {𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), 𝑓4(𝑥), 𝑓5(𝑥), 𝑓6(𝑥)}, 

                                       subject to 

                                                     𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≤ 40, 

                                                   5𝑥1 + 𝑥2 ≤ 12, 

                                                     𝑥3 + 𝑥4 ≥ 5, 

                                                     𝑥3 + 5𝑥4 ≥ 50, 

                                         𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟.    

                           

Solving LSMLFP problem for each objective function one by one, then the optimal solution is 

(𝑥1
∗, 𝑥2

∗, 𝑥3
∗, 𝑥4

∗)𝑓1 = (0, 0, 38, 2), 𝑓1
∗ = 0.9302, (𝑥1

∗, 𝑥2
∗, 𝑥3

∗, 𝑥4
∗)𝑓2 = (0, 0, 0, 10), 𝑓2

∗ = 0.7692, 

(𝑥1
∗, 𝑥2

∗, 𝑥3
∗, 𝑥4

∗)𝑓3 = (2, 0, 0, 10), 𝑓3
∗ = 12, (𝑥1

∗, 𝑥2
∗, 𝑥3

∗, 𝑥4
∗)𝑓4 = (0, 0, 40, 0), 𝑓4

∗ = 0.9302, 

(𝑥1
∗, 𝑥2

∗, 𝑥3
∗, 𝑥4

∗)𝑓5 = (0, 0, 40, 0), 𝑓5
∗ = 0.9302, (𝑥1

∗, 𝑥2
∗, 𝑥3

∗, 𝑥4
∗)𝑓6 = (0, 12, 3, 2) and 𝑓6

∗ = 0.1591. 

Therefore, the objective functions are transformed by using the 1st order Taylor series [18] to linear 

functions as follows: 
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𝑓1(𝑥) ≅ 𝑓
1
(𝑥) = −0.0633𝑥1 − 0.0416𝑥2 + 0.0016𝑥3 + 0.0016𝑥4 + 0.8653, 

𝑓2(𝑥) ≅ 𝑓2(𝑥) = −0.1598𝑥1 − 0.0237𝑥2 − 0.1361𝑥3 + 0.0178𝑥4 + 0.5917, 

𝑓3(𝑥) = 𝑥1 − 𝑥2 − 𝑥3 + 𝑥4, 

 𝑓4(𝑥) ≅ 𝑓4(𝑥) = −0.04𝑥1 − 0.0882𝑥2 + 0.0016𝑥3 − 0.0449𝑥4 + 0.8653,         

 𝑓5(𝑥) ≅ 𝑓5(𝑥) = −0.0633𝑥1 − 0.0184𝑥2 + 0.0016𝑥3 − 0.0416𝑥4 + 0.8653,     

 𝑓6(𝑥) ≅ 𝑓6(𝑥) = 0.0083𝑥1 + 0.0119𝑥2 − 0.0263𝑥3 − 0.0263𝑥4 + 0.1381. 

                        

Using the nonnegative weighted sum approach [9]; let 

𝑤1
∗ = 0.3, 𝑤2

∗ = 0.2, 𝑤3
∗ = 0.2, 𝑤4

∗ = 0.1, 𝑤5
∗ = 0.1 and 𝑤6

∗ = 0.1. 

Then, the LSMLFP problem becomes large-scale single-objective integer linear programming and takes 

the form: 

LSLP: 𝑚𝑎𝑥𝑃(𝑥) = 0.1396𝑥1 − 0.2267𝑥2 − 0.2291𝑥3 + 0.1928𝑥4 + 0.5648, 

                                       subject to 

                                                     𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≤ 40, 

                                                   5𝑥1 + 𝑥2 ≤ 12, 

                                                     𝑥3 + 𝑥4 ≥ 5, 

                                                     𝑥3 + 5𝑥4 ≥ 50, 

                                         𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟.     

                          

Using the decomposition technique [5, 19] together with the branch-and-bound method [7], the optimal 

integer solution for the large-scale model given in the illustrated example is as follows: 𝑋∗ =

(𝑥1
∗, 𝑥2

∗, 𝑥3
∗, 𝑥4

∗) = (2, 0, 0, 10), 𝑓1
∗ = 0.5714, 𝑓2

∗ = 0.5714, 𝑓3
∗ = −8, 𝑓4

∗ = −0.2857, 𝑓5
∗ = −0.381, 

𝑓6
∗ = −0.381 and 𝐹∗ = 2.772. 

 

Using the efficiency test, the optimal integer solution 𝑋∗ = (𝑥1
∗, 𝑥2

∗, 𝑥3
∗, 𝑥4

∗) = (2, 0, 0, 10) is efficient. 

 

II. Using Yager ranking function [21] 

 

Using Yager ranking function [21], then the equivalent crisp model of FLSMLFP problem is written as: 

LSMLFP: 𝑚𝑎𝑥𝐹(𝑥) = {𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), 𝑓4(𝑥), 𝑓5(𝑥), 𝑓6(𝑥)}, 

                                       subject to 

                                                     𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 ≤
58

3
, 

                                                   5𝑥1 + 𝑥2 ≤
88

15
, 

                                                     𝑥3 + 𝑥4 ≥
73

30
, 

                                                     𝑥3 + 5𝑥4 ≥ 24, 

                                         𝑥1, 𝑥2, 𝑥3, 𝑥4 ≥ 0 𝑎𝑛𝑑 𝑖𝑛𝑡𝑒𝑔𝑒𝑟.    
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Applying the same previous steps, we get the efficient optimal integer solution is 𝑋∗ = (𝑥1
∗, 𝑥2

∗, 𝑥3
∗, 𝑥4

∗) =

(1, 0, 0, 4), 𝑓1
∗ = 0.4545, 𝑓2

∗ = 0.4545, 𝑓3
∗ = 5, 𝑓4

∗ = −0. .1818, 𝑓5
∗ = −0.2727, 𝑓6

∗ = −0.2727 and 

𝐹∗ = 1.4756. 

  

5. CONCLUSION 

This study presents a method to tackle fuzzy large-scale multiple objective integer linear fractional 

programming (FLSMLFP) problem, using various kinds of linear ranking functions. In the crisp model, 

the first order Taylor series together with the weighting method can be used to formulate the LSLP 

problems. Then, the decomposition technique and the branch-and-bound method can be used to complete 

the solution process. To test the validity of this method, a numerical example is provided. The results 

obtained show the applicability and accuracy of proposed technique. 
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