

International Journal of Current Research and Applied Studies, (IJCRAS)

ISSN: 2583-6781

available at https://ijcras.com/

Volume 1 Issue 2 May-June 2022

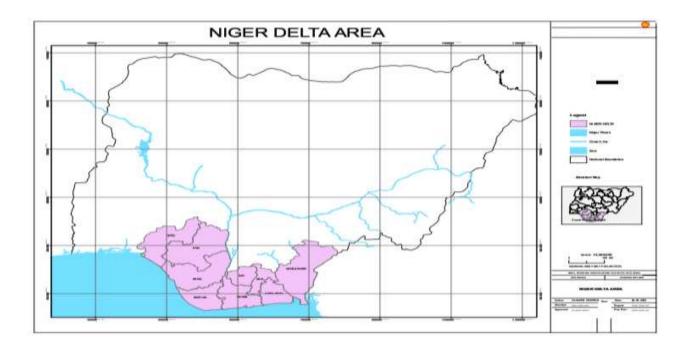
Page 17-34

SEDIMENTOLOGICAL, BIOSTRATIGRAPHIC AND WIRELINE LOG ANALYSIS OF AF-1 WELL, NIGER DELTA BASIN, NIGERIA.

E.J. IGHODARO¹ and T.J. FREGENE²

¹Department of Geology and Petroleum Studies, Western Delta University, Oghara, Delta State. Nigeria. ²Department of Geology, University of Benin, Benin City. Edo State, Nigeria.

ABSTRACT


Sedimentological, Biostratigraphic, and Wireline techniques were applied to AF-1 Well for well based characterisation. Hundred (100) ditch cutting samples were analysed and a lithologic section was produced based on the sedimentological analysis. AF-1 Well has a total thickness of 6335 ft ranging from depths of 5525ft – 11860ft. From 5525ft – 7175ft, continental sands were encountered. From 7235ft – 11860ft, there was intercalation of sand and shale lithologies.

Three Maximum Flooding Surfaces (MFSs) were picked and dated as P784 (10.4Ma), P770 (11.5Ma) and P750 (12.8Ma). Two Sequence Boundaries (SBs) were picked, which were at P784 (10.6Ma) and P750 (12.1Ma).

Keywords: Sedimentological, Biostratigraphic, Wireline Log, Characterisation

INTRODUCTION

The Niger Delta Basin, geographically located in the eastern Gulf of Guinea, is one of the most prolific petroleum basins in the world (Fig 1). The delta consists of Tertiary marine and fluvial deposits that overlie oceanic crust and fragments of the extended African continental crust (Bilotti & Shaw, 2005).

Fig. 1: A grid of the Niger Delta Area in Nigeria. (SPDC Cartography department Warri, 2009)

In the course of exploring for crude oil, a multi-disciplinary approach is needed to be able to get all the desired information that are necessary for a successful well investigation, and to put this information together to achieve a unified goal of successfully exploring, finding and exploiting recoverable crude oil. In finally bringing all the available information together for interpretation, biostratigraphic data is key information that will enable the defining of different stratigraphic sequences of the well, which will greatly aid in reservoir characterization and correlation.

Where the required biostratigraphic data is indeterminate (barren), reservoir characterization can still be carried out based on the sedimentological and sequence stratigraphic subdivisions.

GEOLOGICAL SETTING

Study Area

The study well "AF-1 Well" is located in the Central Swamp depobelts of the Niger Delta Basin (Fig 2 below)

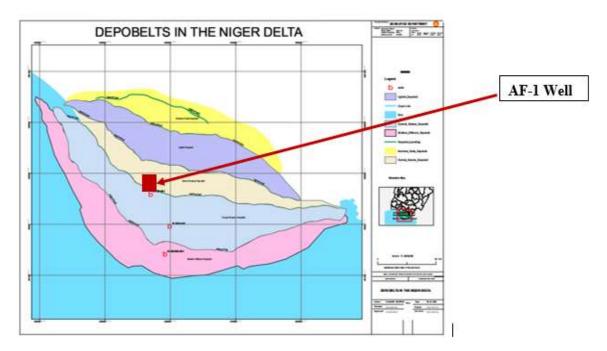


Fig 2: Location of Study Area (in red) insert in the Regional Niger Depobelts. (Modified from SPDC Creations 2008)

Regional Niger Delta Development.

The Niger Delta clastic wedge formed along the failed arm of a triple-junction system (aulacogen) that originally developed during break-up of the South American and African plates in the late Jurassic. Two rift arms that followed the Southwestern and Southeastern Coasts of Nigeria and Cameroon developed into the passive continental margin of West Africa, whereas the third failed arm defined the Benue trough, located under the Gulf of Guinea, offshore (Owoyemi et al, 2006). Therefore, the Niger Delta is situated, building out into the Gulf of Guinea and extends throughout the Niger Delta Province as defined by Klett, et al (Tuttle et al, 1999).

Following an early history of rift filling in the late Mesozoic, this clastic wedge steadily prograde into the Gulf of Guinea during the Tertiary as drainage networks developed across the African Craton and this passive margin subsided (Owoyemi et al, 2006).

Initially, the subsequent instability and subsidence along the rift zones led to a marine transgression which terminated in late middle Cretaceous times. In the late Cretaceous, a proto-Niger Delta first developed, but this ended with a major transgression during the Paleocene. From the Eocene onward, a continued progradation occurred with the deposition of a wedge of fluvio-deltaic sediments which built out into the South Atlantic as the proto-modern Niger Delta (Lambert-Aikhionbare and Shaw, 1982). The overall area of the Niger Delta is an issue of minor controversy in that different authors have given different areal extents for it. Magbagbeola and Willis, 2007, in their work stated that the Niger Delta covers an area of 70,000km² within the Gulf of Guinea. Pochat et al, 2004, asserts that the Niger Delta covers an area of

about 140,000 km² and has an average sediment thickness of about 12 km, and that this siliciclastic system began to prograde across the pre-existing continental slope into the deep sea during the late Eocene and is still active today. Finally, Lambert-Aikhionbare and Shaw, 1982, suggested that the Niger Delta today occupies 64,000 km² of the sedimentary basin of Southern Nigeria. As discussed, the coastal sedimentary basin of Nigeria has been the scene of three depositional cycles. The first began with a marine incursion in the middle Cretaceous and was terminated by a mild folding phase during the Santonian. The second included the growth of a proto-Niger Delta during the Late Cretaceous and ended as a result of a major Paleocene marine transgression. The third cycle, from Eocene to Recent, reflects the continuous growth of the main Niger Delta (Short and Stauble, 1967), as we know it know in its modern sense.

The onshore portion of the Niger Delta Province is delineated by the geology of southern Nigeria and southwestern Cameroon. The northern boundary is the Benin flank – an east-northeast trending hingeline south of the West African basement massif (Fig. 3). The northeastern boundary is demarked by outcrops of the Cretaceous on the Abakaliki High, and further east-south-east by the Calabar flank – a hingeline bordering the adjacent Precambrian. The Offshore boundary of the province is defined by the Cameroon volcanic line to the east, the eastern boundary of the Dahomey basin (the eastern-most West African transform fault passive margin) to the west.

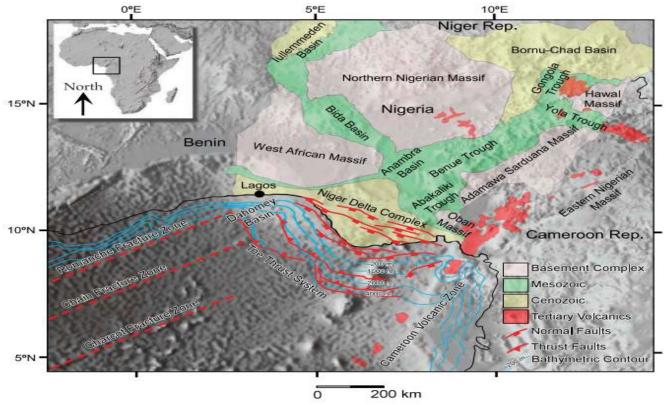


Fig. 3: Location of the Niger Delta region showing the main sedimentary basins and tectonic features. The delta is bounded by the Cameroon volcanic zone, the Dahomey Basin, and the 4,000-m (13,100-ft) bathymetric contour (Modified from Onuoha,1999).

Regional Stratigraphy of the Tertiary Niger Delta

The Niger Delta basin consists of Cretaceous to Holocene marine clastic strata that overlie oceanic, and fragments of continental crust. The Cretaceous section has not been penetrated beneath the Niger Delta basin, and thus, Cretaceous lithologies can only be extrapolated from the exposed sections in the next basin to the northeast, the Anambra basin. In the latter basin, Cretaceous marine clastics consist mainly of Albian-Maastrichtian shallow-marine clastic deposits. The precise distribution and nature of correlative Cretaceous deposits beneath the offshore Niger Delta is unknown. From the Campanian to the Paleocene, both tide-dominated and river dominated deltaic sediments were deposited during transgressive and regressive cycles respectively. In the Paleocene, a major transgression, referred to as the "Sokoto transgression" initiated deposition of the Imo Shale across the Anambra basin and the Akata Shale in the Niger Delta basin. During the Eocene, the sedimentation changed to being wave dominated. At this time, deposition of sediments began in the Niger Delta basin, and as the sediments prograded south, the coastline became progressively more wave dominated (Corredor et al, 2005). Thus, the Tertiary section of the Niger Delta is divided into three formations representing fairly continuous prograding depositional environments namely the Akata, Agbada and Benin Formations (Fig. 4).

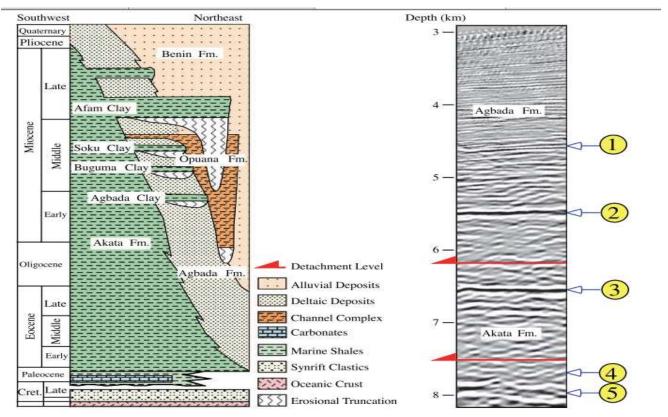


Fig. 4: Schematic diagram of the regional stratigraphy of the Niger Delta and variable density seismic display of the main stratigraphic units in the outer fold and thrust belt and main reflectors, including: (1) top of the Agbada Formation, (2) top of the Akata Formation, (3) mid – Akata reflection, (4) speculated top of the synrift clastic deposits, and (5) top of the oceanic crust. Main detachment levels are highlighted with red arrows (Modified from Lawrence *et al*, 2002).

MATERIALS AND METHODS

This research involves different disciplines will be integrated to better highlight the final result. The study involves three phases of analysis viz: sedimentological analysis, biostratigraphic data interpretation and Wireline Log analysis

Materials used are:

> Well Ditch Cutting samples

AF-1 Sample Inventory

S/N	DEPTH								
1	5525	21	6815	41	8090	61	9370	81	10645
2	5600	22	6875	42	8150	62	9430	82	10705
3	5660	23	6935	43	8210	63	9490	83	10765
4	5720	24	6995	44	8270	64	9550	84	10825
5	5780	25	7055	45	8330	65	9610	85	10885
6	5840	26	7115	46	8390	66	9670	86	10945
7	5900	27	7175	47	8450	67	9730	87	11005
8	5960	28	7235	48	8510	68	9790	88	11065
9	6020	29	7295	49	8575	69	9850	89	11125
10	6080	30	7355	50	8635	70	9910	90	11185
11	6140	31	7415	51	8695	71	9970	91	11245
12	6200	32	7475	52	8755	72	10030	92	11305
13	6260	33	7535	53	8815	73	10090	93	11365
14	6320	34	7595	54	8875	74	10150	94	11425
15	6380	35	7655	55	8935	75	10210	95	11485
16	6455	36	7730	56	9010	76	10285	96	11560

International Journal of Current Research and Applied Studies Vol 1 Issue 2 May-June 2022

17	6530	37	7805	57	9085	77	10360	97	11635
18	6605	38	7880	58	9160	78	10440	98	11710
19	6680	39	7955	59	9235	79	10510	99	11785
20	6755	40	8030	60	9310	80	10590	100	11860

➢ Well Wireline Log

Biostratigraphic data (F-zones, P-zones and abundance array of both forams and palynological data)

Niger Delta Cenozoic Chart

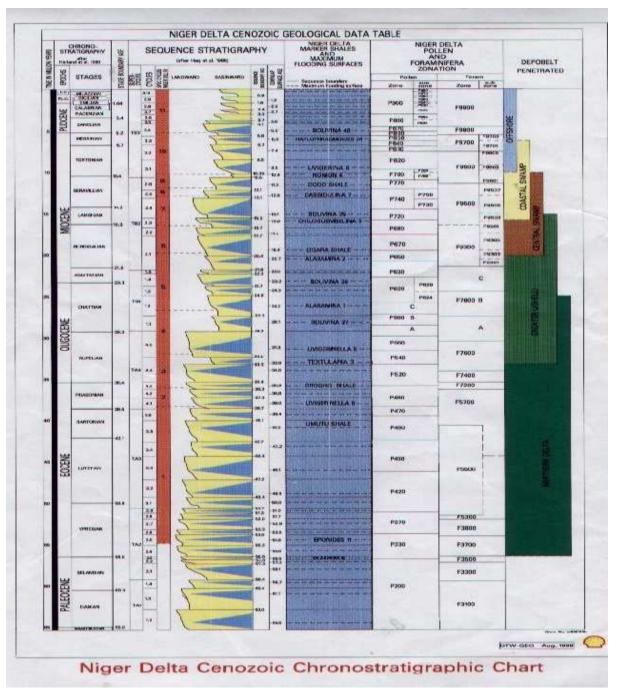


Fig. 5: The SPDC Niger Delta Cenozoic Chronostratigraphic Chart (Haq et al. 1988)

Methods used are:

a. Sedimentological Analysis

The sedimentological analysis of my well samples involved washing the samples initially with water to remove the contamination of the drilling mud, since the drilling mud used is water based mud. After that, the washed samples were dried in pans placed on hot plates. After the drying, the samples were viewed and analyzed with the aid of a microscope for sedimentological description of the samples with particular focus on sediment texture, sorting and lithologic type

b. Wireline Log Analysis

- The Wireline logs used were the Caliper Log, Gamma Ray Log and the Spontaneous Potential (SP) Log. These logs are sensitive to sediment variance and therefore can delineate between sand and shale lithologies
- c. Biostratigraphic Interpretation
 - Biostratigraphy is a powerful tool for constraining the ages of stratigraphic sequences. When integrated with wireline logs, it becomes very useful to locate sequence boundaries (SB) and condensed sections Maximum Flooding Surface (MFS).

RESULT AND INTERPRETATION

Sedimentological Analysis

The sedimentological analysis of AF–1 Well was carried out and samples description was done with the production of a resultant lithologic section. The following table showcases the result of the analysis.

Table 1: Sedimentary Description of Af-1 (Central Swamp Depobelt) Well Samples

SF	EDIMEN	NTARY	DESCR	IPTION	OF AF-1	(CENT	RAL SWAN	IP DEPOBELT) WELL SAMPL	ES	
LI	EGEND										
1			e sand sto	ne			DTH DEPTH				
2		Mediu	m/fine sa	nd stone			SST	SAND STO	NE		
3		Very f	ine sand s	stone			SHL	SHALE			
4			sand ston				SLTS	SILT STON	E		
5		Hetero	lithic lith	ology			LITH	LITHOLOG	Y		
6		Sandy	Shale								
7		Shale									
G											
S		0/	0/	0/ CT					ACCESSODY	LI T	
/ N	DTH	% SST	% SHL	%SL TS			DESCRIPT	NON	ACCESSORY MINERALS	I H	
1		221	SHL	15	-			se, well sorted,	WIINERALS	п	
1	5525	99	0	<1	angular		illess, coals	se, well solleu,	Fossil casts		
1	5525	<i>))</i>	0	<u></u>	•		irless verv	fine very well	1 05511 Cd5t5		
2	5600	98	2	0	Sandstone, colourless, very fine, very well sorted, sub-angular						
	5000	,,,	2	0		Sandstone, colourless, fine, very well sorted,					
3	5660	99	0	<1	sub-angular						
					Sandstone, whitish, very fine, very well						
4	5720	100	0	0		sorted, sub-angular					
					Sandsto	one, whit	ish, very f	ïne, very well			
5	5780	100	0	0	sorted, s	sub-angul	ar				
6	5840	97	2	1	Sandsto	one, whiti	sh, fine, well	sorted, angular			
					Sandsto	one, whit	ish, very f	ïne, very well			
7	5900	99	<1	0	sorted, s	sub-angul	ar				
					Sandsto	one, whit	ish, fine, ve	ery well sorted,			
8	5960	100	0	0	angular						
							ish, very f	ïne, very well			
9	6020	100	0	0	sorted, a	U					
1		100					ish, very f	ïne, very well			
0	6080	100	0	0	sorted, a	0	C'	11 / 1 1			
1	6140	00	-1				tine, very w	vell sorted, sub-			
1	6140	99	<1	0	rounded			fina varia 11			
1 2	6200	99	0	<1		sub-round		fine, very well			
2 1	6260	100	0	<1				fine very wall			
1	0200	100	U	U	Sanusto	Sandstone, colourless, very fine, very well					

3					sorted, sub-rounded	
1	(220)	100		0	Sandstone, colourless, very fine, very well	
4	6320	100	0	0	sorted, sub-rounded	
1	60 00	100			Sandstone, colourless, very fine, very well	
5	6380	100	0	0	sorted, sub-rounded	
1					Sandstone, colourless, very fine, very well	
6	6455	99	0	<1	sorted, sub-rounded	
1					Sandstone, whitish, very fine, very well	
7	6530	100	0	0	sorted, sub-rounded	
1					Sandstone, colourless, medium, very well	
8	6605	100	0	0	sorted, sub-rounded	
1					Sandstone, colourless, very fine, very well	
9	6680	99	<1	0	sorted, sub-rounded	
2					Sandstone, whitish, very fine, very well	
0	6755	99	<1	0	sorted, sub-rounded	
2					Sandstone, colourless, fine, very well sorted,	
1	6815	99	<1	<1	sub-rounded	
2					Sandstone, colourless, medium, well sorted,	
2	6875	99	<1	<1	sub-angular	
2					Sandstone, colourless, fine, well sorted, sub-	
3	6935	99	<1	<1	angular	
2					Sandstone, colourless, medium-coarse, well	
4	6995	99	0	1	sorted, angular	
2					Shaly sandstone, whitish, fine-coarse, poorly	
5	7055	70	20	10	sorted, angular	
2					Sandstone, whitish, very fine, very well	
6	7115	99	<1	0	sorted, sub-rounded	
2					Sandstone, gray, fine, well sorted, sub-	
7	7175	99	<1	0	rounded	
2						
8	7235	2	98	0	Shale, dark gray	
2					Shaly sandstone, whitish, very fine, very well	
9	7295	60	40	0	sorted, sub-rounded	
3					Shaly sandstone, colourless, very fine, well	
0	7355	80	20	0	sorted, angular	
3			1			
1	7415	<1	99	0	Shale, dark gray	
3					Sandstone, colourless, very fine, very well	
2	7475	99	<1	0	sorted, sub-rounded	
L	L	I	1			

3					Shaly sandstone, colourless, fine, well sorted,		
3	7535	89	10	<1	sub-angular		
3					Shaly sandstone, colourless, fine-coarse,		
4	7595	85	15	0	poorly sorted, angular		
3					Sandstone, colourless, very fine, very well		
5	7655	99	<1	0	sorted, sub-rounded		
3					Sandstone, whitish, medium, very well		
6	7730	99	1	0	sorted, sub-rounded		
						Minute	
3					Heterolic, brownish, very fine-coarse, poorly	carbonaceous	
7	7805	50	50	0	sorted, angular	particles	
3					Sandstone, very fine, very well sorted,		
8	7880	90	10	0	angular		
						Likeness of	
						coachroach	
						abdominal cast,	
3					Sandstone, whitish, very fine, very well	and much woody	
9	7955	95	5	0	sorted, sub-angular	input	
4					Sandstone, whitish, very fine, very well		
0	8030	99	<1	0	sorted, angular		
4					Sandstone, whitish, very fine, very well		
1	8090	99	1	0	sorted, sun-angular		
4					Sandstone, colourless, fine-coarse,		
2	8150	98	2	0	moderately sorted		
4	0010				Sandstone, colourless, fine-coarse, poorly		
3	8210	98	2	0	sorted, angular		
4	0070		10	0	Shaly sandstone, colourless, fine-coarse,		
4	8270	90	10	0	moderately sorted, angular		
4	0220	10	C 0	0			
5	8330	40	60	0	Sandy shale, dark gray		
4	0200	2	00		Shale dark may		
6	8390	2	98	0	Shale, dark gray		
4	9450	50	50		Heterolic, brownish, very fine, very well		
7	8450	50	50	0	sorted, sub-rounded		
4	8510	90	10	0	Shaly sandstone, whitish, fine, well sorted, sub-angular		
8	0310	70	10	U	suo-aliguiai		
4 9	8575	<1	99	<1	Shale, dark gray		
5	8635	<1 99	1	<1	Sandstone, colourless, very fine, very well		
3	0033	フフ	1	U	Sandstone, colouriess, very line, very well		

0					sorted, sub-rounded		
5					Sandstone, colourless, very fine, very well		
1	8695	99	1	0	sorted, sub-rounded	Coal particles	
5					Sandstone, colourless-gray, coarse, well		
2	8755	95	3	2	sorted, angular		
5							
3	8815	1	99	0	Shale, dark gray		
5					Heterolic, gray, very fine, very well sorted,		
4	8875	50	50	0	sub-rounded		
5					Sandstone, gray, very fine, very well sorted,		
5	8935	98	1	1	sub-rounded		
5							
6	9010	20	80	0	Sandy shale, dark gray		
5							
7	9085	1	98	1	Shale, dark gray		
5					Sandstone, whitish, very fine, very well	Much woody	
8	9160	99	1	0	sorted, sub-angular	input	
5					Sandstone, gray, very fine, well sorted, sub-		
9	9235	98	2	0	rounded		
6					Sandstone, whitish, very fine, well sorted,		
0	9310	99	1	0	sub-rounded		
6					Sandstone, whitish, very fine, very well		
1	9370	99	<1	0	sorted, sub-rounded	woody particles	
6	0.420	00	10		Shaly sandstone, whitish, very fine, very well		
2	9430	90	10	0	sorted, sub-rounded		
6	0.400	20	70		Condensite to the concentration of the		
3	9490	30	70	0	Sandy shale, dark gray, very fine		
6 4	9550	98	2	0	Sandstone, colourless, moderate, well sorted,		
4	9330	98	2	0	angular Sandstona whitish fina well sorted sub		
0 5	9610	95	5	0	Sandstone, whitish, fine, well sorted, sub- rounded		
5 6	2010	75	5		Sandstone, whitish, very fine, very well	Much woody	
6	9670	99	1	0	sorted, angular	impute	
6	2070	,,	1		Sandstone, colourless, fine, well sorted, sub-	Micaceous flakes,	
7	9730	95	5	0	rounded	woody inputs	
6	7150	,,,	5		Sandstone, colourless, fine, moderately	mputs	
8	9790	93	5	2	sorted, angular		
6			-				
9	9850	2	98	0	Shale, dark gray		
Ĺ		I	1.2		· · · , · · · · · Ø · · J		

						Much
7					Shaly sandstone, brownish, medium,	Ferrugineous
0	9910	80	20	0	moderately sorted, angular	input
7						
1	9970	<1	99	0	Shale, dark gray	
7	1003					
2	0	<1	99	0	Shale, dark gray	
						Much
7	1009					Ferrugineous
3	0	98	2	0	Sandstone, whitish, fine, well sorted, angular	input
7	1015				Sandstone, whitish, medium, moderately	
4	0	95	4	1	sorted, angular	
						Much
7	1021				Shaly sandstone, whitish, medium, well	Ferrugineous
5	0	92	8	0	sorted, angular	input
7	1028					
6	5	20	80	0	Sandy shale, dark gray	
7	1036				Sandstone, whitish, medium, well sorted,	
7	0	99	<1	0	angular	
7	1044				Sandstone, whitish, medium, very well	
8	0	95	3	2	sorted, sub-angular	
7	1051				Sandstone, whitish, medium, well sorted,	
9	0	95	3	2	sub-angular	Ferrugineous sst
8	1059	o 7	_		Sandstone, whitish, very fine, well sorted,	
0	0	95	5	0	sub-angular	
8	1064 ~	1	00			
1	5	1	99	0	Shale, dark gray	
8	1070	1	00			
2	5	1	99	0	Shale, dark gray	
8	1076	90	10	0	Shaly sandstone, brownish, very fine, very well sorted, sub-rounded	
3	5 1082	90	10	0		
8 4	1082 5	60	40	0	Heterolic, colourless, fine, well sorted, sub- angular	
4	1088	00	40		Sandstone, colourless, fine, well sorted, sub-	Ferrugineous
。 5	5	98	2	0	angular	Particles
8	1094	70	~		Sandstone, colourless, fine, well sorted, sub-	
6	5	95	5	0	angular	
8	1100	,,,	5		Sandstone, colourless, medium, moderately	
7	5	96	2	2	sorted, angular	
′	5	70	4	-	sortou, ungului	

8	1106						
8	5	40	60	0	Sandy shale,		
8	1112	-		-			
9	5	2	98	0	Shale, dark gray		
9	1118				Sandstone, whitish, medium, well sorted,		
0	5	95	4	1	angular		
9	1124				Shaly sandstone, gray, medium, moderately		
1	5	80	20	0	sorted, sub-angular		
9	1130				Heterolic, gray, very fine, well sorted, sub-		
2	5	40	60	0	angular		
9	1136				Shaly sandstone, colourless, very fine, well		
3	5	80	20	<1	sorted, sub-rounded		
9	1142				Shaly sandstone, colourless, fine-coarse,		
4	5	90	10	0	poorly sorted, angular		
9	1148				Sandstone, colourless, very fine-coarse,	Coal particles,	
5	5	98	1	<1	moderately sorted, angular	ferrugineous sst	
9	1156						
6	0	20	80	0	Sandy shale, dark gray		
9	1163						
7	5	30	60	10	Sandy shale, light gray, very fine sst		
9	1171						
8	0	<1	99	<1	Shale, dark gray		
9	1178						
9	5	<1	99	<1	Shale, dark gray		
1							
0	1186				Sandstone, colourless, very fine, moderately		
0	0	70	5	25	sorted, sub-angular		

AF-1 Well samples displayed a lithologic section that is generally sandy at the top, with the mid-section and the basal parts having intercalations of sand and shale lithologies. The sands range from very fine to coarse grained. The overall lithologic section suggests a lateral shifts of depositional environment from shallow to deep water environment.

Biostratigraphic and Wireline Interpretations

A broad biostratigraphic framework was developed for the well with the MFSs determined based on biofacies abundance data with the associated sequences boundaries mapped. Wireline logs were used in conjunction with the biofacies data. Using an already established data of MFSs and SBs in the Niger Delta Basin as Portrayed in the Niger Delta Cenozoic Geological Data Chart, the relative F and P zones and biofacies data of AF-1 Well enabled the delineation of the MFSs and SBs in the well.

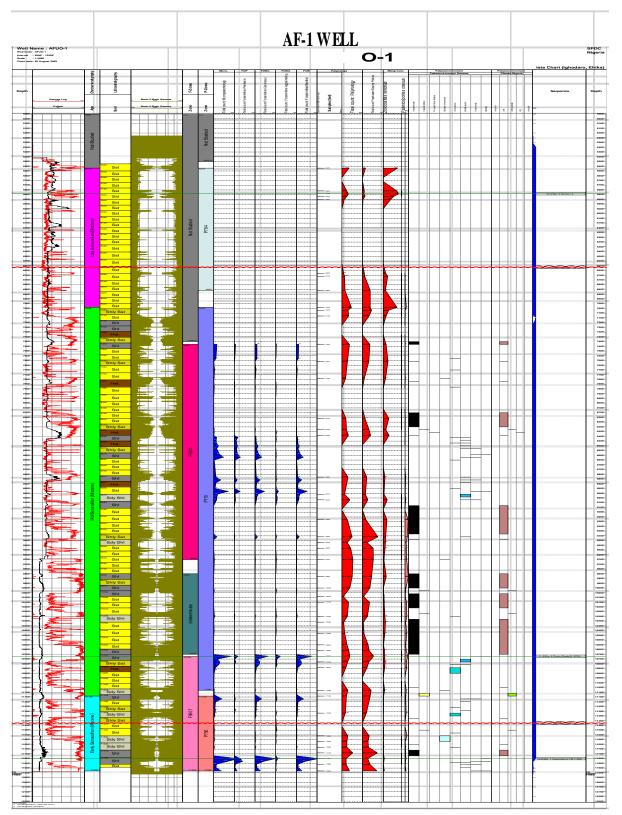


Fig. 6: Stratabugs plot of AF-1 Well composite interpretations. Showing the depth scale, wireline

logs, interpreted lithologic section, F & P zones, biofacies abundance data and the stratigraphic surfaces (MFS & SB)

The first MFS is suggested at 5840ft and it was identified by the abundance peaks of the biofacies data and attributed to the fossil "Nonion 4" associated with 10.4Ma. It occurred within the P784 palynology biozone and matched against the Niger Delta Cenozoic Chart. The Gamma Ray (GR) log showed an increase in shale content in the system over that interval.

At depth 6615ft, the first SB was established based on the very low count/barrenness of microfossils. It was established within the P784 biozone and tied to the 10.6Ma Sequence Boundary of the Niger Delta Cenozoic Chart.

The second MFS was defined at the depth of 10720ft and tied to the microfossil abundance peaks of both foram and paly data sets. The GR log confirmed that it fell within a condensed section and fell within the P770 biozone. Its occurrence is associated with the 11.5Ma Dodo Shale event.

The second SB was picked at depth of 11425ft within the P750 biozone, and confirmed by GR log decreased deflection, and tied to the 12.1Ma SB shown on the Niger Delta Cenozoic Chart.

At the depth of 11800ft, the third MFS is postulated and is attributed to foram abundance peak of "Cassidulina 7". It fell within the P750 biozone and the GR log showed a condensed section. It is aged 12.8Ma as matched against the Niger Delta Cenozoic Chart.

Based on the biostratigraphic subdivisions, the well has been characterised into five (5) major lines of subdivision.

CONCLUSION

This work has employed sedimentological analysis to produce lithologic section of AF-1 Well; biostratigraphic interpretation was used to define the chronostratigraphic surfaces (Maximum Flooding Surfaces and Sequence Boundaries) which define the Third Order sequence. The litholgic sections give visual aspects of the well from shallow to deep water environments as the sediment type grades from sand to shaly lithologies. The biostratigraphic interpretation defined Maximum Flooding Surfaces and Sequence Boundaries based on microfossils abundance peaks and the signatures of the wireline logs, producing a characterization on chronostratigraphic lines of subdivision, which spells out the Third Order sequence. From the result, it is evident the tools used in this research for well based characterization and correlation are indispensable in detailed reservoir prediction in petroleum exploration.

REFERENCES

Bilotti, F. and Shaw, J. H. (2005): Deep-water Niger Delta Fold and Thrust Belt Modeled as a Criticaltaper Wedge: The Influence of Elevated Basal Fluid Pressure on Structural Styles. The American Association of Petroleum Geologists. Vol. 89 (11). Pp 1475 – 1491.

Corridor, F., Shaw, J. H. and Bilotti, F. (2004): Structural Styles in the Deep-water Fold and Thrust Belts of the Niger Delta. The American Association of Petroleum Geologists. Vol. 89 (6), Pp 753 – 780.

Lambert-Akhionbare, D. O. and Shaw, H. F. (1982): Significance of Clays in the Petroleum Geology of the Niger Delta. The Mineralogical Society, 1982, Vol. 17. Pp 91 – 103

Magbagbeola, O. A and Willis, B. J. (2007): Sequence Stratigraphy and Syndepositional Deformation of the Agbada Formation, Robertkiri Field, Niger Delta, Nigeria. The American Association of Petroleum Geologists. Bulletin. Vol. 91. Pp 945 – 958.

Owoyemi, A. O. and Willis, B. J. (2006): Depositional Patterns Across Syndepositional Normal Faults, Niger Delta, Nigeria. Journal of Sedimentary Research. Vol.76 (2). Pp 346 – 363

Pochat, S., Castelltort , S., Van Den Driessche, J., Besnard, K. and Gumiaux, C. (2004): A Simple Method of Determining Sand/Shale Ratios from Seismic Analysis of Growth Faults: An Example from Upper Oligocene to Lower Miocene Niger Delta Deposits. The American Association of Petroleum Geologists. Bulletin Vol. 88 (10). Pp 1357 – 1367.

Short, K. C. and Stauble, A. J. (1967): Outline of Geology of Niger Delta. The American Association of Petroleum Geologists. Bulletin Vol. 51 (5). Pp 761 – 779

Tuttle, M. L. W., Charpentier, R. R., and Brownfield, M. E. I. (1999): The Niger Delta Petroleum System: Niger Delta Province, Nigeia, Cameroon and Equatorial Guinea, Africa. US Geological Survey Open-File Report 99-50-H, Denver, Colorado, 70-73.