

International Journal of Current Research and Applied Studies, (IJCRAS)

ISSN: 2583-6781

available at https://ijcras.com/

Volume 1 Issue 1 March-April 2022

Page 30-43

TRENDS IN SOLAR SIMULATORS: A REVIEW

N. M. Shehu and G. Babaji,

Department of Physics, Bayero University, Kano, Nigeria

ABSTRACT

Solar simulators are major characterization tools yielding the performance values of solar cells or modules. They are used in photovoltaic industries and academia for researches in photochemistry, biosensors, sunscreen testing and so on. Solar simulators have been facing many challenges in terms of design, construction, and characterization as well as in their being used to characterize other devices. In this article, problems faced by engineers and scientists in developing, and characterizing solar simulators are presented.

Keywords: Spectral mismatch, Irradiance, Characterization, LED

INTRODUCTION

As a result of the decline in fossil fuels and increase in global warming, sources of sustainable energy have started gaining more consideration as substitute energy sources. Clean energy becomes necessary for the outlook of our planet. The sun is the best natural accessible energy that we have. Photovoltaic solar cells convert the sun energy into electricity at continual improved efficiencies. Mainstream technologies exhibit close to 20% efficiencies while record efficiencies have surpassed 40% showing the potential for further advancement of technological and increase in efficiency (Samir et al., 2020). Photovoltaic cells can be characterized either outdoors or indoors. However, outdoor characterization of solar cells is affected by some uncontrollable parameters such as solar energy variation, geographical location, time, day of the year, climate conditions, composition of atmosphere, variation in altitude and weather conditions (Kockott & Schoenlein, 2012), (Esen et al., 2017). The indoor photovoltaic cell characterization is performed with the aid of the so-called solar simulator.

Solar simulator is an artificial device that can provide intensity and spectrum close to or mimic the natural sunlight. It is widely used in the indoor testing and research of solar photovoltaic (PV) cells, plastics,

polymers, and other materials which are sensitive to the sunlight (Tavakoli et al., 2020). Solar simulator produces the operating conditions which are imperative for the solar cell to work. Hence a solar simulator is considered as a fundamental instrument for the characterization of the solar cell. These systems are basically big, bulky, and costly but a small solar simulator can be a good contribution to test small device manufactured in research scale (Trentadue et al., 2021).

1.1 Need for Solar Simulator

The impact of determining the health status of solar photovoltaic modules leads to the development of special test equipment. It's usually to achieve reproducible results under outdoor conditions. In order to overcome this challenge, indoor tests are incorporated, providing a controlled environment under laboratory conditions for testing, usually called solar simulator (Cortés- et al., 2021). The purpose of the solar simulator is to provide a controllable indoor test facility under laboratory conditions, used for the testing of solar cells, sun screen, plastics, and other materials and devices (Mankar et al., 2018).

1.2 Standard for Solar Simulators

Solar simulators are characterized by a three-letter code that classifies each of the three criteria. The first code classifies spectral match, the second code classifies spatial non-uniformity, and the third code classifies temporal instability. Class A is the most stringent requirement and therefore indicates better performance than Class B, which is better than Class C. For example, a Class AAA solar simulator meets Class A requirements for all criteria, whereas a Class ABA solar simulator meets Class A requirements for spectral match and temporal instability but Class B requirements for spatial non-uniformity (Newport Corporation, 2011). The three compliance standards that define solar simulator performance are:

- i. International Electrotechnical Commission (IEC) Standards.
- ii. Japanese Industrial (JIS) Standards.
- iii. American System for Testing and Materials (ASTM) Standards.

Each standard's requirements for spectral match, spatial non-uniformity and temporal instability are described below:

	Spectral Match	Non-uniformity of irradiance	Temporal Instability (Short Term)	Temporal Instability (Long Term)		
Class A	0.75-1.25	2%	0.5%	2%		
Class B	0.6-1.4	5%	2%	5%		
Class C	0.4-2.0	10%	10%	10%		

	Table 1	: IEC	60904-9	Comp	liance	Stand	lards
--	---------	-------	---------	------	--------	-------	-------

	Spectral Match	Non-uniformity of irradiance	Temporal Instability (Short Term)	Temporal Instability (Long Term)			
Class A	0.75-1.25	<u>±</u> 2%	0.5%	2%			
Class B	0.6-1.4	<u>±</u> 3%	2%	5%			
Class C	0.4-2.0	±10%	10%	10%			

 Table 2: JIS C8904-9 Compliance Standards

Table 3: ASTM E 927-10 Compliance Standards

	Spectral Match	Non-uniformity of irradiance	Temporal Instability
Class A	0.75-1.25	2%	2%
Class B	0.6-1.4	5%	5%
Class C	0.4-2.0	10%	10%

In each of the standards, the minimum class required of a solar simulator is C.

This paper reports the trends and the challenges in solar simulators and their designs as well as construction.

2. Trends in Solar Simulators

Research on solar simulators can be traced back to the early 1960s with a series of research programs sponsored by National Aeronautics and Space Administration (NASA) in which a solar simulator was used to re-provide the extraterrestrial solar radiation (Nygren, 2014). There were subsequent series of developments of solar simulators by various researchers and institutions all in an effort to intensify researches in solar simulation and to develop a solar simulator that can give spectral components much closer to the natural sun. Light sources are the most important in the design and construction of a solar simulator. Thus, most of the solar simulators have been developed by simply moving from one light source to another or hybrid of the sources for improved spectrum.

Jang and Shin (2010) fabricated a solar simulator and employed numerical thermal analysis to investigate the increase in the junction temperature of the LEDs, which remains a challenge when they are utilized as the light source in the development of the solar simulators. The authors demonstrated that the junction temperature of the LED module can be significantly decreased by optimization of several design parameters. The schematic of the fabricated LED solar simulator is shown in the fig.1.

Fig. 1. Schematic LED Solar simulator (Jang & Shin, 2010).

Codd et al.(2010) employed three dimensional approach of the Newton-Raphson method and designed, built and characterized a low cost, high flux, large area solar simulator for the study of optical melting and light absorption behavior of molten salts. The authors were able to show that this approach to multi-source simulator could be easily extended to four or more sources desirable for the next generations of multi-junction solar cells. The approach is an improvement over the past practice where only one source could be adjusted on one sub-cell at a time.

Figure 2: MIT metal-halide CSP solar simulator (Codd et al., 2010)

Due to low intensity limitations of LED-based solar simulators, in (Namin et al., 2012), the authors developed a solar simulator by adopting tungsten, halogen and monochromatic red, green, blue and white LEDs as the light source. High irradiance not previously obtained by tungsten halogen lamps and LEDs has been realized.

Figure 3: A schematic structure of combined tungsten halogen and blue LED solar simulator (Namin et al., 2012)

In an attempt to overcome the narrower output spectral width challenge in LEDs, Georgescu et al., (2013)

employed a numerical approach to determine the LEDs central wavelengths and relative intensities so that their cumulated spectrum can follow the solar one to certain degrees of precision, using both the distribution as defined in the ASTM E927-05 Standard and the measured solar spectrum as a calibration reference.

In another research study, Hamdani et al., (2013) developed a large area solar simulator by intermixing of many LED light rays and power delivery in the form of a synthesized air mass (AM) 1.5 spectrum. However, the developed simulator could not produce expected high intensity.

Figure 4: A schematic structure of the solar simulator (Hamadani et al., 2013)

Mekys, (2015) designed a LED-based solar simulator by employing 19 high power LEDs in a compact array. The author demonstrated that these LEDs were sufficient to achieve high light flux density with A class spectral distribution match, A class irradiance non-uniformity, and A class temporal instability for the test area of at least 5 cm diameter.

To overcome the challenge of narrowed range parameters of some solar simulator, Xu et al., (2016) developed a solar simulator by employing seven independent xenon arc lamps each consuming 10Kw. The simulator was able to simulate highly concentrating solar systems. Most of the solar simulators developed in previous researches were small scale solar simulators.

Figure 5: The assembled group of seven xenon arc lamps (Xu et al., 2016)

To bring an end to small scale solar simulator, Ahmad et al., (2018) developed a large area solar simulator employing a modular array of light emitting diodes of six different wavelengths. The simulator reached AAA class.

Some light sources such as Quartz Tungsten Halogen (QTH) lamp suffer bulb overheating which leads to the degradation decrease in the lamp intensity. Salam et al., (2019) developed a solar simulator using QTH lamps as the light source and implemented a controlled mechanism to overcome the overheating in the QTH. The simulator has successfully been realized.

Figure 6: (a) Block diagram of developed solar simulator and (b) its layout in a box (Salam et al., 2019)

Relying solely on LED light alone in the development of solar simulator hardly makes the simulator to

achieve standardized intensity (Bodnár et al., 2020). For the improved intensity the authors designed and constructed a solar simulator employing halogen-LED as the light source. The authors were able to achieve good intensity.

Figure 7: Complete Solar Simulator (Bodnár et al., 2020)

Due to the need for large area solar simulator, Meshram and Yadav (2021) developed a large area uniform illumination for larger cells characterisation by intermixing different LED rays. However, the design fell short of the standard solar AM 1.5 G intensity.

Figure 8: Detailed diagram of the LED based Solar Simulator showing all the functioning blocks (Meshram & Yadav, 2021).

The table 1 below gives the summary of the reviewed articles on solar simulator.

S/N	Reference	Problem/Challenge	Materials/Method	Focus	Contribution
1	(Jang &	Using LEDs as the sources of light in solar	96 LED packages, Collimated lens, Air	Thermal	Demonstrated
	Siiii, 2010)	simulators leads to the	mass filter (1.5D),	LED modulos	tamparature of
		temperature of the	Numerical thermal	LED modules	the LED module
		LEDs	analysis of the LED	employed in the	and he
			performed for the	solar simulator.	
			thermal optimization.		significantly
					decreased by the
					optimization of
					several design
					parameters.
2	(Codd et al.,	It is critical for the	The Newton-Raphson	Adjusting	Showed that this
	2010)	correct current be	method which uses the	multi-source	approach to
		produced on each	derivative of a	solar simulators	multi-source
		junction to produce	function to extrapolate		simulator may be
		accurate I-V curves for	to a solution.		easily extended to
		multi-junction solar			four or more
		cells.			sources desirable
					for the next
					generations of
					multi-junction
					solar cells.
3	(Namin et	Number of research	Employed tungsten,	High irradiance	Achieved high
	al., 2012)	works were published	halogen and		irradiance in the
		on LED simulators, all	monochromatic red,		developed solar
		showing low intensity	green, blue and white		simulator.
		limitations of LED-	LEDs		
		based simulators.			
4	(Bazzi et al.,	Design of LED platform	LED spectra, power	Designing a	A LED based
	2012)	combined with power	converters for LED	LED-based	solar simulator
		electronics and control	drive, and control.	simulator with	with flexible
		establishes a missing	Visible light of a	control	control and
		link in the literature,	standard solar	mechanism.	energy
		where these aspects are	spectrum was		conversion was
		treated independently.			realized.

Table 1: Summary of the previous works on solar simulators

			simulated using six		
			LED colors.		
5	(Georgescu	Using LEDs in the	Employed the	Obtaining a	It has been shown
	et al., 2013)	construction of a solar	numerical approach to	spectral	that a calibration
		simulator poses a	determine LEDs	distribution	based completely
		number of difficulties	central wavelengths	closely matched	on the ASTM
		mainly because of the	and relative intensities	to that of the	Standard can
		narrower output spectral	using Gaussian	sun, by using	cause significant
		width.	distributions for	LEDs for which	local deviations
			accurate	their spectra	in case of LED
			approximation of the	were calculated	solar simulators.
			LED output	by means of	
			characteristics.	Gaussian	
				distributions,	
				functions which	
				could permit an	
				excellent	
				correlation with	
				the	
				experimental	
				determinations.	
6	(Hamadani	Large-area uniform	Used high power	Design of a	Fabricated large
	et al., 2013)	illumination more	LEDs as the source of	large area solar	area solar
		suitable for larger cells	light.	simulator for	simulator.
		and module		larger solar cell	
		measurements still		characterization.	
		remain a challenge			
		today.			
7	(Mekys,	The light intensity	Employed 19 high-	Designing a class $\Delta \Delta \Delta$	The compact
	2015)	insufficiency problem in	power LEDs for a	simulator.	LED- based AAA
		other light sources.	usable illuminated area		class solar
			of at least 5 cm in		simulator, was
			diameter with at least 1		demonstrated for
			sun irradiance.		test areas of up to
					5 cm in diameter.

International Journal of Current Research and Applied Studies Vol 1 Issue 1 Mar-Apr 2022

8	(Xu et al.,		Employed seven	Provide wide	Designed and
	2016)	Narrowed ranges of	independent xenon arc	range	constructed a
		parameters (radiative	lamps as the light	parameters of	solar simulator
		fluxes, temperatures,	source. Each lamp	the solar	that simulates the
		and spot sizes) of some	consumes 10kW	simulators.	radiation
		solar simulators.	electricity and has its		characteristics of
			own reflector.		highly
					concentrating
					solar systems and
					serves as an
					experimental
					platform for
					investigating the
					thermo- chemical
					processing of
					solar fuels and
					for testing
					advanced high-
					temperature
					materials.
9	(Ahmad et	Laboratory	The simulator uses a	Development of	The class AAA
	al., 2018)	characterisation of large	novel configuration of	large area solar	LED solar
		area (> 1 m ²) solar	LED modules	simulator.	simulator was
		modules using	positioned in a		designed in
		simulated solar	hexagonal geometry		accordance with
		illumination remains an	design.		the standards of
		ongoing issue.			ASTM E-927-10
					to measure the I-
					V characteristics
					of solar cells.
10	(Salam et al.,	Decrease in light	Employed QTH lamps	Control	A QTH lamp–
	2019)	intensity leading to	as the light source, an	mechanism to	based solar
		overheating and long-	alternating current	overcome	simulator has
		term degradation of the	phase-cut dimmer, a	overheating of	been success-
		bulb and filter	light intensity meter,	the source.	fully developed.
			and an ATMega328p		A control

			microcontroller with a		mechanism was
			computer and a liquid		implemented in
			crystal display.		the solar
					simulator to
					overcome the
					decrease in the
					QTH lamp light
					intensity due to
					the bulb
					overheating and
					long-term
					degradation.
11	(Bodnár et	Inability to achieve light	Employed a hybrid		Designed and
	al., 2020)	intensity required for	halogen-LED as the		constructed a
		standardized	light source with		solar simulator
		examinations by relying	reflector.		which achieved
		solely on LED lights.			good uniformity.
12	(Meshram &	Large-area uniform	Used phosphor	Designing a	Successfully
	Yadav,	illumination, more	converted LEDs to	large area	developed a
	2021)	suitable for larger cells	cover a good spectral	uniform	simulator on lab
		and module	response over the	illumination.	scale basis.
		measurements still	standard irradiance		
		remain a challenge	spectra.		
		today.			

3. FINDINGS

Many research works related to solar simulators have been studied and extensively reviewed. From the review it can be seen that there were series of solar simulator developments solving one problem or the other and, in some researches, leading to the emergence of new challenges. In most of the researches, light sources are the most challenging aspects of the simulator as a standardized light need to be produced for photovoltaic cell characterization and other testing requiring the spectrum close to or matches that of the sun. Apart from the standard light intensity challenge, the review also highlights the need for small scale solar simulator developments. There is also for optimal light control in the development of solar simulator.

4. CONCLUSION

The paper presents a literature review on solar simulators. Various problems faced by researches in the design and developments of solar simulators have been presented. From the report it is clear that robust researches need to be carried out especially in the design of small scale solar simulators which is capable

of producing a standard light intensity required for photovoltaic cell characterization and other devices testing according to American System for Testing and Materials (ASTM), International Electrotechnical Commission (IEC) or Japanese Industrial Standard (JIS).

REFERENCES

- Ahmad, A. Y. Al, Holdsworth, J., Belcher, W. J., Zhou, X., Vaughan, B., Dastoor, P. C., & Ahmad, A. L. (2018). *Modular LED arrays for large area solar simulation*. *August*, 1–11. https://doi.org/10.1002/pip.3072
- Bazzi, A. M., Klein, Z., Sweeney, M., Kroeger, K. P., Shenoy, P. S., & Krein, P. T. (2012). Solid-state solar simulator. *IEEE Transactions on Industry Applications*, 48(4), 1195–1202. https://doi.org/10.1109/TIA.2012.2199071
- Bodnár, I., Koós, D., Iski, P., & Skribanek, Á. (2020). Design and construction of a sun simulator for laboratory testing of solar cells. *Acta Polytechnica Hungarica*, 17(3), 165–184. https://doi.org/10.12700/APH.17.3.2020.3.9
- Codd, D. S., Carlson, A., Rees, J., & Slocum, A. H. (2010). A low cost high flux solar simulator. *Solar Energy*, 84(12), 2202–2212. https://doi.org/10.1016/j.solener.2010.08.007
- Cortés-, R., Cárdenas-, S. C., Barraza, B. R., Sánchez-, A., Patricio, S., & Lefort, V. (2021). *Optimal* design and experimental test of a solar simulator for solar photovoltaic modules. May, 1–15. https://doi.org/10.1002/ese3.985
- Esen, V., Sa, Ş., & Oral, B. (2017). *Light sources of solar simulators for photovoltaic devices : A review. xxxx.* https://doi.org/10.1016/j.rser.2017.03.062
- Georgescu, A., Gîrțu, M. A., & Ciupină, V. (2013). Spectral calibration of a LED-based solar simulator -A theoretical approach. *Journal of Optoelectronics and Advanced Materials*, 15(1–2), 31–36.
- Hamadani, B. H., Chua, K., Roller, J., Bennahmias, M. J., Campbell, B., Yoon, H. W., & Dougherty, B. (2013). Towards realization of a large-area light-emitting diode-based solar simulator. *Progress in Photovoltaics: Research and Applications*, 21(4), 779–789. https://doi.org/10.1002/pip.1231
- Jang, S. H., & Shin, M. W. (2010). Fabrication and thermal optimization of LED solar cell simulator. *Current Applied Physics*, 10(3), S537–S539. https://doi.org/10.1016/j.cap.2010.02.035
- Kockott, D., & Schoenlein, A. (2012). To what extent does the radiation of a solar simulator meet a " reference sun"? A quantitative approach. *Polymer Testing*, 31(5), 710–715. https://doi.org/10.1016/j.polymertesting.2012.04.005
- Mankar, R., Ramtekkar, R., Dudhe, S., Godghate, A., Kawade, M., Waghmare, R., & Chahande, S. (2018). *Solar Simulator Kit.* 1, 800–808.
- Mekys, A. (2015). Compact Light-Emitting Diode-Based AAA Class Solar Simulator : Design and Application Peculiarities. 1–6.
- Meshram, N. D., & Yadav, P. J. (2021). Design of a Low Cost Solar Simulator by using Light Emitting Diode (LED). *Journal of Physics: Conference Series*, 1921(1). https://doi.org/10.1088/1742-6596/1921/1/012103
- Namin, A., Jivacate, C., Chenvidhya, D., Kirtikara, K., & Thongpron, J. (2012). Construction of tungsten halogen, pulsed LED, and combined tungsten halogen-LED solar simulators for solar cell

i - V characterization and electrical parameters determination. *International Journal of Photoenergy*, 2012. https://doi.org/10.1155/2012/527820

- Newport Corporation. (2011). Technical Notes: Solar Simulator Standards Definitions & Comparisons.
- Nygren, M. A. (2014). Solar Simulation for the NTNU Test Satellite Solar Cells. March.
- Salam, R. A., Munir, M. M., Warsahemas, T., Saputra, C., Latief, H., & Khairurrijal, K. (2019). A simple solar simulator with highly stable controlled irradiance for solar panel characterization. *Measurement and Control (United Kingdom)*, 52(3–4), 159–168. https://doi.org/10.1177/0020294019827327
- Samir, A., Mahgoub, A., Eliwa, A., & Atia, D. M. (2020). *Design and Implementation of LED Solar Simulator. July 2021*. https://doi.org/10.37394/232016.2020.15.8
- Tavakoli, M., Jahantigh, F., & Zarookian, H. (2020). Adjustable high-power-LED solar simulator with extended spectrum in UV region. *Solar Energy*, *February*, 0–1. https://doi.org/10.1016/j.solener.2020.05.081
- Trentadue, G., Pavanello, D., Pravettoni, M., Poh, D., & Prakash, J. (n.d.). Design of a Low Cost Solar Simulator by using Light Emitting Diode (LED) Design of a Low Cost Solar Simulator by using Light Emitting Diode (LED). https://doi.org/10.1088/1742-6596/1921/1/012103
- Xu, J., Tang, C., Cheng, Y., Li, Z., Cao, H., Yu, X., Li, Y., & Wang, Y. (2016). Design, Construction, and Characterization of an Adjustable 70 kW High-Flux Solar Simulator. *Journal of Solar Energy Engineering, Transactions of the ASME*, 138(4), 1–7. https://doi.org/10.1115/1.4033498